UJI COBA MODEL FISIK SISTEM BRIDGE WEIGH IN MOTION SEDERHANA PADA JEMBATAN GELAGAR BAJA KOMPOSIT (TRIAL MODEL OF A SIMPLE BRIDGE WEIGH IN MOTION SYSTEM ON STEEL GIRDER COMPOSITE BRIDGE)

Isi Artikel Utama

Widi Nugraha
Gatot Sukmara

Abstrak

ABSTRAK
Pada umumnya, penggunaan sistem WIM untuk mengukur beban kendaraan dan lalu lintas di Indonesia saat ini masih mengandalkan sistem WIM temporer. Survei tersebut pada umumnya dilakukan untuk durasi paling lama satu minggu. Pada tahun 2015, Puslitbang Jalan dan Jembatan, Kementerian PUPR (Pusjatan) mengembangkan sebuah sistem WIM yang relatif baru di Indonesia. Sistem WIM ini memanfaatkan struktur jembatan dengan mengukur respons elemen jembatan akibat beban kendaraan yang melintas sebagai data dasar untuk diolah dengan sebuah algoritma untuk menghitung beban kendaraan (sistem bridge WIM). Luaran dari sistem bridge WIM ini adalah beban kendaraan yang dihitung berdasarkan respons struktur jembatan dan kecepatan kendaraan yang dihitung berdasarkan selisih waktu saat kendaraan melintas pada dua sensor berurutan yang jarak antarsensornya diketahui. Pusjatan pada tahun 2016 melakukan implementasi dari konsep teknologi bridge WIM sederhana dengan memasang sensor strain transducer pada Jembatan Cipeles, sebuah jembatan gelagar baja komposit dengan panjang bentang 30 m, berlokasi di Ruas Jalan Nasional Bandung-Cirebon, Kabupaten Sumedang, Provinsi Jawa Barat. Proses kalibrasi dari sistem ini dilakukan dengan mengukur respons struktur jembatan untuk beban kendaraan truk yang beratnya diketahui. Hasil dari perhitungan beban kendaraan dengan bridge WIM sederhana ini memberikan simpangan terhadap pengukuran beban kendaraan statis. Hasil kalibrasi menunjukkan sekitar 3,87% perbedaan dengan muatan truk yang dikenal secara statis. Perhitungan kecepatan kendaraan menggunakan sistem bridge WIM ini, memberikan simpangan sebesar 9,3% dibandingkan terhadap pengukuran dengan speed gun untuk sepuluh kendaraan yang melintas di atas jembatan.
Kata Kunci: jembatan, weigh in motion, sensor, beban kendaraan, kecepatan kendaraan
ABSTRACT
Generally, the use of a temporarily WIM system to measure vehicular loads and traffic are common practices in Indonesia. It takes about maximum one week of survey. In 2015, a relatively new WIM system in Indonesia is developed by IRE, Ministry of Public Works and Housing. This WIM system uses bridge structural responses due to vehicle loads as input to the system which is then calculated by using an algorithm to determine the vehicle loads (bridge WIM system). The output of this bridge WIM system are vehicle loads that are calculated by using bridge structural responses and vehicle speeds that are calculated by differences of vehicle passing time on two adjacent sensors, with the distances between them as defined. The bridge responses were measured by using strain transducers attached on the bridge. In 2016, IRE implemented a simple bridge WIM concept by installing strain transducer on Cipeles Bridge. This bridge is a steel girder composite bridge with 30 m span located in Bandung-Cirebon National Road, Sumedang Regency, West Java. To calibrate the system, bridge responses were measured by statically known truck load. The calibration results shows about 3,87% differences with statically known load truck. In addition, in terms of vehicle speed, it shows about 9,3% differences with speed gun measurements.

Keywords: bridge, weigh in motion, sensors, vehicular load, vehicle speed

Rincian Artikel

Bagian
Roads and Bridges
Biografi Penulis

Widi Nugraha, Pusat Litbang Jalan dan Jembatan - Kementerian PUPR

Balai Litbang Struktur Jembatan
Peneliti Muda

Gatot Sukmara, Pusat Litbang Jalan dan Jembatan - Kementerian PUPR

Balai Litbang Struktur Jembatan
Kepala Seksi Penyelenggaraan Teknis / Peneliti Muda

Referensi

Cestel dan ZAG. 2014. SiWIM Manual. Ljubljana: Cestel.

Gonzalez, Arturo. 2010. Development of a bridge weigh-in-motion system: A technology to convert the bridge response to the passage of traffic into data on vehicle configurations, speeds, times of travel and weights. Germany: LAP Lambert Academic Publishing AG & Co. KG. Saarbrucken: Lambert Academic Publishing AG & Co. KG.

Jacob, Bernard, dan Véronique Feypell-de La Beaumelle. 2010. “Improving truck safety: Potential of weigh-in-motion technology.†IATSS Research 34 (1): 9–15. doi:10.1016/j.iatssr.2010.06.003.

Laboratoire Central des Ponts et Chaussees. 2002. COST 323 Weigh-in-Motion of Road Vehicles: Final Report (1993-1998). Research Report, Paris: Laboraoire Central des Ponts et Chaussees.

Lydon, Myra, S. E. Taylor, D. Robinson, A. Mufti, dan E. J O Brien. 2016. “Recent developments in bridge weigh in motion (B-WIM).†Journal of Civil Structural Health Monitoring 6 (1): 69–81. doi:10.1007/s13349-015-0119-6.

Moses, F. 1979. “Weigh-in-Motion System Using Instrumented Bridges.†Transportation Engineering Journal of ASCE 105 (3): 233–49.

Nugraha, Widi, dan Gatot Sukmara. 2016. WIM Bridge: Ujicoba Model Fisik Teknologi Pengukuran Beban Kendaraan Bergerak menggunakan Jembatan Terinstrumentasi. Bandung: Puslitbang Jalan dan Jembatan, Kementerian Pekerjaan Umum dan Perumahan Rakyat.

Peters, R J. 1984. “AXWAY-a system to obtain vehicle axle weights.†Australian Road Research 12 (1).

Saleh, Sofyan M., Ofyar Z. Tamin, Ade Sjafruddin, dan Russ Bona Frazila. 2009. “Pengaruh Muatan Truk Berlebih Terhadap Biaya Pemeliharaan Jalan.†Jurnal Transportasi 9 (1): 79–89. http://journal.unpar.ac.id/index.php/journaltransportasi/article/view/348.

Sentosa, Leo, dan Asri Awal Roza. 2012. “Analisis dampak beban overloading kendaraan pada struktur rigid pavement terhadap umur rencana perkerasan ( studi kasus ruas jalan simp lago – sorek km 77 s/d 78 ).†Jurnal Teknik Sipil 19 (2): 161–68.

Znidaric, A, I Lavric, dan Jan Kalin. 2002. “The next generation of bridge weigh-in-motion systems.†In Third International Conference on Weigh-in-Motion (ICWIM3) Iowa State University, Ames.

Zolghadri, N., M.W. Halling, N. Johnson, dan P.J. Barr. 2016. “Field Verification of Simplified Bridge Weigh-in-Motion Techniques.†Journal of Bridge Engineering 21 (10): 1–17. doi:10.1061/(ASCE)BE.1943-5592.0000930.