PEREDAM PASIF UNTUK PILON JEMBATAN GANTUNG TERHADAP BEBAN GEMPA PADA TAHAP KONSTRUKSI (PASSIVE DAMPER FOR SUSPENSION BRIDGE PYLON UNDER EARTHQUAKE LOAD DURING CONSTRUCTION PHASE)
Main Article Content
Abstract
ABSTRAK Vibrasi jembatan merupakan fenomena yang tidak dapat dihindari akibat interaksi antara beban dan struktur. Vibrasi jembatan tidak hanya terjadi pada saat jembatan beroperasi, namun juga dapat terjadi saat masa konstruksi akibat beban transien. Jika vibrasi tersebut terlalu berlebih baik dari sisi magnitudo maupun frekuensi, maka dapat mengakibatkan gangguan pada saat masa konstruksi termasuk saat tahap pembangunan pilon. Vibrasi yang berlebih pada jembatan dapat dikendalikan dengan menggunakan sistem kontrol pasif. Pada kajian ini dibahas kontrol pasif dengan menggunakan sistem peredam untuk membatasi vibrasi lateral pada bagian pilon jembatan pejalan kaki tipe penggantung saat masa konstruksi. Peredam yang digunakan yaitu peredam tipe viscous dan peredam massa. Untuk skema pertama, peredam viscous diletakkan di bawah level lantai dan puncak pilon, sedangkan untuk skema kedua, peredam massa hanya diletakkan pada puncak pilon. Analisis struktur dilakukan dengan menggunakan analisis riwayat waktu dengan gempa masukan Imperial Valley 1940 yang telah diskalakan terhadap target spektra wilayah Jakarta berdasarkan SNI 2833:2016. Berdasarkan analisis diperoleh hasil nilai maksimum reduksi simpangan untuk sistem pilon dengan peredam viscous yaitu sebesar 20% sedangkan untuk peredam massa yaitu sebesar 56%. Nilai drift dan gaya geser dasar per tiang juga menunjukkan pilon dengan menggunakan peredam massa memiliki respon yang lebih baik dibandingkan pilon dengan peredam viscous. Hal ini menggambarkan penggunaan peredam massa pada puncak pilon lebih efektif dalam mereduksi vibrasi akibat gempa dibandingkan peredam viscous.
Kata kunci: vibrasi, kontrol pasif, peredam viscous, peredam massa, analisis riwayat waktu
ABSTRACT Bridge vibration is an inevitable phenomenon due to interaction between load and structure. Bridge vibration is not only occur during operational period, but also during construction period due to transient actions. If the vibration excessively arise in terms of magnitude or frequency, it will gives disturbances during bridge construction stage include pylon construction stage. Bridge excessives vibration can be controlled by using passive control system. In this study, the used of damper system to limit the lateral vibration of suspension pedestrian bridge pylonis explored. The damper system used are viscous damper and mass damper. For the first scheme, the viscous damper is positioned beneath the deck level and at the top of pylon level, whereas for the second scheme, the mass damper is placed only on the top of the pylon level. Structural analysis is then carried out by using time history analysis with acceleration input from Imperial Valley 1940 ground motion which is scaled to the target spectra of Jakarta based on SNI 2833:2016. From analysis, it is found that there exists amaximum displacement reduction of 20% for pylon with viscous damper and 56% for pylon with mass damper. In addition drift ratio and the maximum shear force per column also shows that pylon with mass damper has a better responses than pylon with viscous damper. This results shows the used of mass damper is more effective in limiting pylon vibration due to seismic loads compare to the viscous damper.
Keywords: vibration, passive control, viscous damper, mass damper, time history analysis
Article Details
Authors who publish in this journal agree to the following terms:
-
Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License, which allows others to share the work with acknowledgment of the work's authorship and initial publication in this journal.
-
Authors may enter into additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of the published work.
Each submitted manuscript must be accompanied by a "Manuscript Originality Statement" and a "Copyright Transfer Statement".
References
Arfiadi, Yoyong. 2010. “Optimasi letak dan sifat peredam massa selaras untuk mengurangi respons struktur akibat gempa.†In Konferensi Nasional Teknik Sipil 4 (KoNTekS 4), 409–16.
Charney, F. Allan. 2010. Seismic Loads, Guide to the Seismic Load Provisions of ASCE 7-10. ASCE Press. https://doi.org/10.1061/9780784413524.ch02#sthash.lnQhFYzm.dpuf.
Computers and Structures Inc. 2015. “CSI Bridge Manual.†University Avenue Berkeley, California 94704 USA.
FEMA. 1997. NEHRP Guidelines for Seismic rehabilitation of buildings. Washington DC.
Fiebig, W. 2010. “Reduction of Vibrations of Pedestrian Bridges Using Tuned Mass Dampers (TMD).†Archives of Acoustics 35 (2): 165–74.
Fujino, Y., Benito M Pacheco, Nakamura Shuni-chi, dan Pennung Warnitchai. 1993. “Synchronization of Human Walking Observed during Lateral Vibration of a Congested Pedestrian Bridge.†Earthquake Engineering and Structural Dynamics 22: 741–58.
Hartog, Den. 1985. Mechanical Vibrations. McGraw Hill Book Company.
Infanti, Samuele, H.T. Kang, dan M.G. Castellano. 2004. “Retrofit of Bridges in Korea using Viscous Damper Technology.†In 13th World Conference on Earthquake Engineering.
Matsumoto, Masaru, Hiromichi Shirato, Tomomi Yagi, Rikuma Shijo, Akitoshi Eguchi, dan Hitoshi Tamaki. 2003. “Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks: The case of Tacoma Narrows Bridge.†Journal of Wind Engineering and Industrial Aerodynamics 91 (12–15): 1547–57. https://doi.org/10.1016/j.jweia.2003.09.010.
PEER. 2016. “Ground Motion Database.†Pacific Earthquake Engineering Research Center. 325 Davis Hall - CA 94720-1792. http://ngawest2.berkeley.edu/.
PT. CMNP tbk. 2011. “Laporan evaluasi kondisi fondasi jalan layang tol Ir. Wiyoto Wiyono MSc.â€
Saeki, Shoichi, Kazuo Tada, Makoto Kitagawa, Atsushi Nitta, dan Toshihiro Kurihara. 1996. “Effects of the Hanshin-Awaji Great Quake Disaster on The Akashi Kaikyo Bridge.†In 11th World Conference on Earthquake Engineering. Elsevier Science Ltd.
Scheller, Joern, dan Michael C Constantinou. 1999. “Response History Analysis of Structures with Seismic Isolation and Energy Dissipation Systems : Verification Examples for Program SAP2000 by.†MCEER, University at Buffalo, State University of New York.
Setio, Herlien D., Rahmat Widarbo, dan Pasca R. Patta. 2008. “Kontrol vibrasi aktif pada struktur yang mengalami beban dinamik dengan menggunakan jaringan saraf tiruan dan algoritma genetik.†Dinamika TEKNIK SIPIL 8 (2): 137–48.
SNI 1725. 2016. Pembebanan untuk jembatan. Badan Standarisasi Nasional (BSN). http://sispk.bsn.go.id/SNI/DetailSNI/10950.
SNI 2833. 2016. Perencanaan Jembatan Terhadap Beban Gempa.
Widarda, Dina Rubiana, dan Ediansjah Zulkifli. 2013. Penerapan Sistem Kontrol Struktur pada Jembatan. Puslitbang Jalan dan Jembatan, Kementerian PU Pera.
Wong Foek Tjong, Robby Sumendap, Freddy Gunawan, dan Takim Andriono. 2003. “Studi Efektifitas Penggunaan Tuned Mass Damper Pada Struktur Gedung Dalam Mereduksi Respons Dinamik Akibat Beban Seismik.†Civil Engineering Dimension 5 (2): 51–62. http://puslit2.petra.ac.id/ejournal/index.php/civ/article/view/15570.
www.gerbusa.com. 2018. “Gerald Desmond Bridge, Long Beach California USA.†2018.