EFEK BUSUR DISTRIBUSI BEBAN PADA TIMBUNAN BERTIANG DENGAN PERKUATAN GEOGRID
Main Article Content
Abstract
ABSTRAK
Timbunan bertiang dengan perkuatan geosintetik merupakan salah satu teknologi untuk mengatasi masalah penurunan dan instabilitas timbunan di atas tanah lunak. Dalam pedoman perencanaan timbunan bertiang, di
antaranya BS 8006-1:2010, EBGEO, dan CUR 226, model analitis yang digunakan untuk menghitung timbunan bertiang didasarkan untuk material berbutir. Selain itu, pedoman-pedoman tersebut juga menggunakan asumsi distribusi beban pada perkuatan geosintetik yang berbeda-beda. Mengingat keterbatasan material tersebut di beberapa lokasi di Indonesia, makalah ini bertujuan untuk mengkaji penggunaan tanah kohesif dalam konstruksi timbunan bertiang melalui analisis dengan Metode Elemen Hingga (MEH) tiga dimensi dari model Den Boogert
(2011) dengan menggunakan bantuan piranti lunak Plaxis 3D Tunnel. Selain itu, makalah ini juga mengkaji asumsi distribusi beban di atas perkuatan geosintetik yang paling sesuai untuk tanah kohesif. Dari hasil kajian ini, tanah kohesif memberikan distribusi beban pada tiang dan pada geosintetik yang berbeda dibandingkan tanah berbutir karena mekanisme perkembangan efek busur yang berbeda. Kajian ini juga mengindikasikan bahwa distribusi beban di atas geogrid yang paling sesuai untuk tanah kohesif adalah distribusi segitiga terbalik dari Van Eekelen & Bezuijen (2012).
Kata kunci: Timbunan bertiang, perkuatan geosintetik, metode elemen hingga tiga dimensi, distribusi beban, tanah kohesif, efek busur
ABSTRACT
Piled embankment with geosynthetic reinforcement is one of the solutions against settlement and embankment instability problems over soft soils. In the current design guidelines, among others BS 8006-1:2010, EBGEO, and CUR 226, analtical models employed for calculating piled embankment are mainly for granular material. Due to the lack of granular material in some locations in Indonesia, this paper describes preliminary study of the use of cohesive soils for piled embankment through analysis with finite element method using Den Boogert (2011) model. Beside that, this paper also discusses assumptions on load distribution over geosynthetic reinforcement that is suitable for cohesive soils. Based on the analysis, cohesive soil gave different load distributions to the pile and to the geosynthetic due to the different in aching effects development. Contrary to the granular soil, cohesive soils gave lower load above the arch that is transferred directly to the pile and higher load that is transferred to the geogrid. This study also indicates that for cohesive soil, the most suitable assumption of load distribution over geosynthetic is the inverse triangle distribution from Van Eekelen & Bezuijen (2012).
Keywords: Piled embankment, geosynthetic reinforcement, 3D finite element method, load distribution, cohesive soil, arching effect
Article Details
Authors who publish in this journal agree to the following terms:
-
Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License, which allows others to share the work with acknowledgment of the work's authorship and initial publication in this journal.
-
Authors may enter into additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of the published work.
Each submitted manuscript must be accompanied by a "Manuscript Originality Statement" and a "Copyright Transfer Statement".
References
Brinkgreve, R. B. J., & Broere, W. 2004. Plaxis 3D
Tunnel Ver 2 Manuals. PLAXIS B. V:
Delft, Plaxis.
British Standards Institution. 2012. Code of
Practice for Strengthened/Reinforced Soils
and Other Fills. BS 8006-1:2010. London:
BSI.
Den Boogert, T.J.M, Van Duijnen, P., dan Van
Eekelen, S. 2012. Numerical Analysis of
Geosynthetic Reinforced Piled Embankment
Scale Model Tests. Plaxis Bulletin. Spring
Issue 2012.
http://kb.plaxis.nl/publications/numericalanalysis-
geosynthetic-reinforced-piledembankment-
scale-model-tests.
_______. 2011. Piled Embankments with
Geosynthetic Reinforcement. M.Sc. Thesis,
Delft University of Technology.
EBGEO. 2011. Recommendations for Design and
Analysis of Earth Structures using
Geosynthetic Reinforcements. German
Geotechnical Society, Berlin: Wilhelm
Ernst & Sohn.
Indonesia. 2002. Panduan Geoteknik 1: Proses
Pembentukan dan Sifat-sifat Dasar Tanah
Lunak. Pt-08-2002-B. Departemen
Permukiman dan Prasarana Wilayah.
_______. 2002. Tata Cara Klasifikasi Tanah dan
Campuran Tanah dan Agregat untuk
Konstruksi Jalan. SNI-03-6797-2002.
Jakarta: Badan Standarisasi Nasional.
Lawson, C.R. 2012. Role of Modelling in the
Development of Design Methods for Basal
Reinforced Piled Embankments.
Proceeding of the Eurofuge 2012, Delft:
Delft University of Technology.
Efek Busur Distribusi Beban pada Timbunan Bertiang dengan Perkuatan Geogrid
(Ahmad Numan, Rakhman Taufik, Syamsi Mahmud Alamsyah, Maulana Iqbal)
Van Eekelen, S.J.M & Bezuijen, A. 2012. Basal
Reinforced Piled Embankments in The
Netherlands, Field Studies And Laboratory
Tests. TC International Symposium on
Ground Improvement IS-GI Brussels
(ISSMGE-2012) Brussels: Departement of
Civil Engineering.
Van Eekelen, S.J.M & Bezuijen, A. 2013.
Equilibrium Models for Arching in Basal
Reinforced Piled Embankments. 18th
International Conference on Soil
Mechanics and Geotechnical Engineering,
Proceeding 2. Paris: Departement of Civil
Engineering.