

NASKAH I LMI AH MONI TORI NG DAN EVALUASI TEKNOLOGI PEMELI HARAAN PERKERASAN KAKU (Sistem Acuan Gelincir, Acuan Tetap, Beton Semen Precast-Prestressed dan Pemeliharaan)

Ir. A. Tatang Dachlan, M. Eng. Sc
Peneliti Utama, Bidang Perkerasan Jalan
Pusat Penelitian dan Pengembangan Jalan
Balitbang, Kementerian Pekerjaan Umum

NASKAH I LMI AH MONI TORI NG DAN EVALUASI TEKNOLOGI PEMELI HARAAN PERKERASAN KAKU (Sistem Acuan Gelincir, Acuan Tetap, Beton Semen

Precast-Prestressed dan Pemeliharaan)

Desember 2012

Cetakan Ke-1, tahun 2012, (xxiv + 168 Halaman)
© Pemegang Hak Cipta Pusat Penelitian dan Pengembangan Jalan dan Jembatan

Nomor ISBN : 978-602-1514-25-2 Kode Kegiatan : 04-PPK3-001107-O12 Kode Publikasi : IRE-TR-87/2012

Kata Kunci : Beton, Perkerasan Beton, Pracetak, Prategang, Acuan

tetap, Acuan bergerak

Penulis:

Ir. A. Tatang Dachlan, M.Eng,Sc.

Editor:

Prof (R) Dr.Ir. Furqon Affandi, M.Sc. Ir. Nyoman Suaryana, M.Sc.

Diterbitkan oleh:

Penerbit Informatika - Bandung Anggota IKAPI Jabar Nomor : 033/JBA/99

Pemesanan melalui:

Perpustakaan Puslitbang Jalan dan Jembatan info@pusjatan.pu.go.id

Kata Pengantar

Perkerasan jalan beton semen sebagai perkerasan jalan menjadi suatu pilihan karena berdasarkan analisis dan evaluasi telah terbukti bahwa kinerjanya lebih unggul dibandingkan dengan perkerasan beraspal.

Publikasi ini disusun berdasarkan studi literatur dan lapangan serta hasil monitoring pelaksanaan di beberapa lokasi perkerasan jalan beton semen, baik jalan beton semen cor di tempat atau perkerasan beton semen pracetak. Beberapa ujicoba pelaksanaan perkerasan beton konvensional dan pracetak dilakukan monitoring dan evaluasi untuk kemungkinan pengembangan selanjutnya, termasuk beberapa cara pemeliharaan akibat kerusakan pada sambungan, retak, *faulting*, dan *pumping*. Hasil uji defleksi pada sambungan dapat memperlihatkan adanya rongga di bawah panel atau sambungan, serta efesiensi penyalur beban. Beberapa pemeliharaan perkerasan jalan beton pracetak dan pracetak-prategang dan sambungan panel secara umum diuraikan terutama dalam upaya mengurangi kerusakan jenis *pumping* di bawah sambungan atau di bawah slab beton.

Dalam publikasi ini dijelaskan pula tentang pelaksanaan perkerasan beton menggunakan acuan tetap dan acuan bergerak (gelincir) sebagai informasi penting untuk pengembangan pedoman pelaksanaan perkerasan kaku yang telah ada di Indonesia.

Bandung, Desember 2012 Penulis.

Ir. A. Tatang Dachlan, M.Eng.Sc. Peneliti Utama Bidang Perkerasan Jalan

Kata Pengantar iii

DAFTAR ISI

KAT	A PE	NGANT	AR	iii
DAF	TAR	ISI		V
DAF	TAR	TABEL		ix
DAF	TAR	GAM BA	\R	Х
DAF	TAR	ISTILAH	l	xxi
1.	PEN	DAHUL	UAN	1
	1.1	Latar B	Belakang	1
		1.1.1	Perkerasan Beton Semen	1
		1.1.2	Perkerasan Beton Pracetak-Prategang	2
		1.1.3	Monitoring dan Evaluasi	2
	1.2	Perma	salahansalahan	4
		1.2.1	Permasalahan Pokok, Sumber Variabel dan	
			Independensi Oby <mark>ek yang</mark> Dimonitor	4
		1.2.2	Pelaksanaan <mark>Pemadatan</mark> dan Penyelesaian	
			Akhir Perkerasan Beton Semen	4
	1.3	Metod	e uji <mark>dan pe</mark> ngukuran	5
			S	5
	1.5	Upaya	U <mark>mu</mark> m Pendekatan Penyelesaian Masalah	
		dan Efe	ektifitasnya	6
	1.6	Teknik	Monitoring dan Analisis Data	7
		1.6.1	Pengumpulan Data	7
		1.6.2	Teknik Analisis Data	14
	1.7	Param	eter dan Interaksi Kondisi Ideal	21
		1.7.1	Parameter Kinerja Fungsional	21
		1.7.2	Parameter Kinerja Kekuatan Struktur	22
	1.8	State o	of the art Perkerasan Beton Pracetak-Prategang	23
2.	ANA	ALLSIS D	ATA DAN PEMBAHASAN UJCOBA SKALA PENUH,	
	BUN	ITU-KEE	BUM EN, JAW A TENGAH	26
	21	Data La	anangan	26

Daftar Isi

		2.1.1	Kondisi Visual di Lokasi Ujicoba Skala Penuh, Buntu.	26
		2.1.2	Perkembangan Kondisi Permukaan Perkerasan	38
		2.1.3	Kedalaman Tekstur	45
		2.1.4	Kekesatan dengan alat British Pendulum Tester (BPT)	48
		2.1.5	Kerataan Permukaan dengan alat Walking	
			Profiler (WP) dan Analisis PSI	49
		2.1.6	Gradien Temperatur Beton dan Muai Susut	
			Sab Pada Sambungan	50
		2.1.7	Pengukuran Defleksi Vertikal dengan Falling	
			Weight Deflectometer (FWD)	53
		2.1.8	Analisis Rongga di Bawah Sambungan	60
		2.1.9	Lalu lintas	77
		2.1.10	Kondisi Bahu	78
		2.1.11	Kondisi Drainase Tepi	80
	2.2	Data La	aboratorium	81
		2.2.1	Kuat Tekan dan <mark>Tebal Per</mark> kerasan/Bahu Beton	81
		2.2.2	Pola Retak Arah Vertikal	82
3.	ANA	ALISIS D	ATA D <mark>AN PEM</mark> BAHASAN JALAN TOL KANCI-PEJAGAN	83
	3.1	Penilai	an <mark>Kondisi</mark> Visual dan Mapping Kerusakan	
		Permul	ka <mark>an J</mark> alan	83
	3.2	Perbail	kan Sambungan Muai	92
		3.2.1	Pola Kerusakan Sambungan Muai Di Jalan Tol	
			Kanci-Pejagan	92
		3.2.2	Perubahan Bentuk Joint Panel	95
		3.2.3	Drainase Bawah-Permukaan	98
		3.2.4	Hasil Uji Lapangan	99
		3.2.5	Pembahasan	101
4.	ANA	ALISIS D	ATA JALAN BETON PRACETAK-PRATEGANG	
	DI C	, MASAK	PANTURA JAW A BARAT	105
	4.1	Analisis	s Kondisi Permukaan Jalan	105
	4.2	Analisis	s Kondisi Struktur Berdasarkan Data FWD	116

5.	AN	ALISIS D	ATA JALAN BETON BERTULANG M ENERUS	
	(CR	CP) DI J	ALAN TOL TANGERANG-M ERAK	
	5.1	Lokasi	Jalan	
	5.2	Analisis	s Kondisi Permukaan Jalan	
6.	ME	SIN PEM	BENTUK PERKERASAN BETON SEM EN	
	6.1	Mesin	Penghampar Beton Semen Jenis Acuan Tetap	
		(fixed f	form)	
		6.1.1	Keuntungan Penggunaan Acuan Tetap	
		6.1.2	Peralatan Penghampar Beton Jenis Acuan Tetap	
		6.1.3	Penempatan dan pemadatan beton pada cetakan	
		6.1.4	Batang penempa (screed)	
		6.1.5	Pemadatan	
		6.1.6	Penyelesaian Akhir (<i>Finishing</i>)	
		6.1.7	Pembongkaran acuan	
	6.2	Mesin	Penghampar Beton J <mark>enis Ac</mark> uan Bergerak	
		(slip-fo	rm)	
		6.2.1	Kenapa m <mark>emilih ac</mark> uan bergerak	
		6.2.2	State of the art	
		6.2.3	Ke <mark>untu</mark> ngan penggunaan acuan bergerak	
		6.2.4	J <mark>enis-</mark> jenis alat penghampar acuan bergerak	
		6.2.5	Alat penghampar untuk perkerasan beton semen	
			jenis acuan bergerak	
		6.2.6	Campuran beton untuk acuan bergerak	
		6.2.7	Persiapan yang diperlukan pada acuan bergerak	
		6.2.8	Alinyemen dan kerataan	
		6.2.9	Kontrol alinyemen vertikal	
		6.2.10	Alinyemen Horizontal	
		6.2.11	Kecepatan Penghampar	
		6.2.12	Augers	
		6.2.13	Vibrator	
		6.2.14	Pelepa perata (floating pan)	
		6215	Penyelesaian akhir (finishing)	

Daftar Isi vii

7.	Pen	utup		155
	7.1	Ujicob	a Skala Penuh di Buntu-Kebumen, Jawa Tengah	155
		7.1.1	Kondisi Visual dan Sfat-sifat Permukaan	155
		7.1.2	Gradien Temperatur Perkerasan Beton	157
		7.1.3	Perubahan Muai-Susut Pada Sambungan	157
		7.1.4	Kondisi Bahu dan Drainase	157
		7.1.5	Kondisi Struktur Perkerasan Berdasarkan Defleksi	158
		7.1.6	Pola Retak Vertikal	158
		7.1.7	Lalu Lintas	158
	7.2	Jalan T	ol Kanci-Pejagan	159
		7.2.1	Kondisi Visual Permukaan Jalan dan Sambungan	159
		7.2.2	Struktur Perkerasan Berdasarkan Pengukuran	
			Defleksi dengan FWD	159
		7.2.3	Perbaikan perkerasan beton dengan <i>Inverted</i> T	
			Concrete	160
	7.3	Jalan E	Beton Pracetak <mark>di Ciasem,</mark> Pantura Jawa Barat	161
		7.3.1	Kondisi V <mark>isual Perm</mark> ukaan Jalan	161
		7.3.2	Struktur Perkerasan Berdasarkan Pengukuran	
			Defleksi dengan FWD	162
	7.4	Jalan C	CRCP dan JRCP di Tol Tangerang-Merak	162
	7.5	Mesin	Pembentuk Perkerasan Beton	162
		7.5.1	Mesin untuk acuan tetap (fixed form)	162
		7.5.2	Mesin untuk acuan bergerak (slip form)	163
DAF	TAR	PUSTA	KA	165
NП	FKS			167

DAFTAR TABEL

		Hal
Tabel 1.	Kriteria Defleksi Maksimum (<i>The Asphalt Institute</i> MS-17)	17
Tabel 2.	Transfer Beban (The Asphalt Institute MS-17)	17
Tabel 3.	Perkembangan Perkerasan Beton dan Beton Pracetak di Luar Negeri	23
Tabel 4.	Perkembangan Perkerasan Beton dan Beton Pracetak di Dalam Negeri	24
Tabel 5.	Variasi Perkerasan Beton yang Diujicoba di Buntu-Jawa Tengah	25
Tabel 6.	Perhitungan Besar Pemuaian Panel Panjang 100 m di Buntu (ACI 325-7R-88)	52
Tabel 7.	Data Lendutan arah Kebumen-Buntu	60
Tabel 8.	Data Lendutan arah Bu <mark>ntu-Keb</mark> umen	68
Tabel 9.	Rangkuman Kon <mark>disi Permuka</mark> an Jalan Tol Kanci-Pejagan	84
Tabel 10.	Analisis defleksi pada lajur lambat, lajut cepat dan lajur tengah	117

Daftar Isi ix

DAFTAR GAM BAR

		Hal
Gambar 1-a	Alat Walking Profilometer (WP)	9
Gambar 1-b-1	Alat Ukur Sand Patch	10
Gambar 1-b-2	Pengukuran dengan Alat Ukur Sand Patch	10
Gambar 1-c-1	Alat British Pendulum Tester (BPT)	10
Gambar 1-c-2	Alat Pengukur Kelicinan Mu-Meter	11
Gambar 1-d-1	Mekanisme Pengukuran Lendutan dengan FWD	12
Gambar 1-d-2	Tipikal Lokasi Titik Uji dengan alat FWD pada Panel Memanjang	13
Gambar 1-d-3	Tipikal Lokasi Titik Uji dengan alat FWD pada Panel Melintang	13
Gambar 2-a-1	Load Transfer	15
Gambar 2-a-2	Diagram defleksi pada <i>Leave Edge</i> sebelum dan sesudah <i>grouting</i> . (AASHTO, 1993)	15
Gambar 2-b-1	Perhitungan Transfer Beban (The Asphalt Institute MS17)	16
Gambar 2-b-2	Deflek <mark>si Pada P</mark> erkerasan Bertulang Menerus	16
Gambar 3-a-1	Contoh Perhitungan Transfer Beban	18
Gambar 3-a-2	ld <mark>ent</mark> ifikasi Rongga di bawah Perkerasan	18
Gambar 3-b-1	Penempatan Sensor	19
Gambar 3-b-2	Penempatan Sensor D2 pada Sensor Nomor 2.	19
Gambar 3-b-3	Lokasi Titik Uji FWD (Leave and Approach Edge)	20
Gambar 4-a	Diagram pengukuran defleksi dengan alat FWD pada JP	21
Gambar 5-a	Konsep rating kinerja perkerasan jalan dengan	22
Gambar 6-a	Denah Ujicoba Skala Penuh Beton Pracetak dan Cor Di Tempat di Buntu-Jawa tengah	25
Gambar 7-a-1	Perkerasan Beton Pracetak Konvensional (M1) Umur 32 Bulan	27
Gambar 7-a-2	Foto Perkerasan Beton Pracetak Konvensional (M1) Umur 32 Bulan (September 2012)	28

Gambar 7-b-1	Perkerasan Beton <i>Fiber</i> Cor Di Tempat (M2) Umur 32 Bulan (September 2012)	29
Gambar 7-b-2	Foto Perkerasan Beton <i>Fiber</i> Cor Di Tempat (M2) Umur 32 Bulan (September 2012)	30
Gambar 7-c-1	Perkerasan Beton Karet Pracetak (M3) Umur 32 Bulan (September 2012)	30
Gambar 7-c-2	Foto Perkerasan Beton Karet Pracetak (M3) Umur 32 Bulan (September 2012)	31
Gambar 7-d-1	Perkerasan Beton Pracetak-Prategang (M4 dan M5) Umur 32 Bulan (Sept 2012)	33
Gambar 7-d-2	Foto Perkerasan Beton Pracetak-Prategang (M4 dan M5) Umur 32 Bulan (Sept 2012)	34
Gambar 7-e-1	Perkerasan Beton Cor di Tempat (M6b) Umur 32 Bulan (September 2012)	34
Gambar 7-e-2	Perkerasan Beton Cor di Tempat (M6b) Umur 32 Bulan (Sept 2012)	35
Gambar 7-f-1	Perkerasan Beton Pr <mark>ategang</mark> Cor di Tempat (M6a) Umur 32 Bulan (Sept <mark>ember 2012</mark>)	36
Gambar 7-f-2	Foto Perkerasan Beton Prategang Cor di Tempat (M6a) Umur <mark>32 Bula</mark> n (September 2012)	37
Gambar 7-g-1	Perkembangan Retak Melintang (Maret 2010 s/d September 2012)	39
Gambar 7-g-2	Foto Perbaikan Retak Melintang pada Beton Karet (M3) dengan <i>Sealant</i> Tuang Panas (September 2012)	39
Gambar 7-g-3	Perkembangan Retak Memanjang (Maret 2010 s/d September 2012)	40
Gambar 7-g-4	Perkembangan Retak Sudut (Maret 2010 s/d September 2012)	41
Gambar 7-g-5	Perkembangan Retak <i>Irregular</i> (Maret 2010 s/d September 2012)	42
Gambar 7-g-6	Perkembangan <i>Spalling</i> (Maret 2010 s/d September 2012)	43
Gambar 7-g-7	Foto kerusakan gompal (<i>spalling</i>) pada sambungan dan perbaikannya	43
Gambar 7-g-8	Perkembangan <i>Faulting</i> (Maret 2010 s/d September 2012)	44

Daftar Isi xi

Gambar 7-g-9	Foto kerusakan <i>faulting</i> pada sambungan dan perbaikannya dengan campuran beraspal panas	45
Gambar 7-g-10	Perkembangan <i>Pumping</i> (Maret 2010 s/d September 2012)	46
Gambar 7-g-11	Foto kegiatan pekerjaan <i>grouting</i> pada bagian yang mengalami <i>pumping</i>	46
Gambar 8-a	Kedalaman Tekstur Permukaan Perkerasan Beton <i>Cast In Place</i> (CIP), Umur 27 Bulan	47
Gambar 8-b	Kedalaman Tekstur Beton Pracetak Umur 27 Bulan	48
Gambar 9-a	Kekesataan Permukaan beton <i>Cast In Place</i> (CIP), umur 27 Bulan	48
Gambar 9-b	Kekesataan Permukaan Beton Pracetak, Umur 27 Bulan	49
Gambar 10-a	Kerataan Permukaan Beton <i>Cast In Place</i> (CIP), Umur 27 Bulan	49
Gambar 10-b	Kerataan Permukaan Beton Pracetak Umur 27 Bulan	50
Gambar 10-c	Kinerja Perkerasan, Tahu <mark>n 20</mark> 10 s/d 2012	50
Gambar 11-a	Huktuasi Temperat <mark>ur Perke</mark> rasan dan Udara	51
Gambar 11-b	Foto peng <mark>ukuran perubahan muai-susut terhadap</mark> tempe <mark>ratur</mark>	52
Gambar 12-a	Ana <mark>lisis <i>Voids</i> pada Beton Konvensi</mark> onal Pracetak (M1)	54
Gambar 12-b	Analisis Voids pada Beton Fiber Sintetis Cor di Tempat (M2)	55
Gambar 12-c	Analisis Voids pada Panel Beton Karet Pracetak (M3)	56
Gambar 12-d	Analisis <i>Voids</i> pada Panel Beton Pracetak-Prategang (M4 dan M5)	57
Gambar 12-e	Analisis <i>Voids</i> pada Beton Prategang Pasca Tarik, Cor di Tempat (M6a)	58
Gambar 12-f	Analisis <i>Voids</i> pada Beton Konvensional Cor di Tempat (M6b)	59
Gambar 12-g	Lendutan (D1) pada Perkerasan Beton, Kebumen-Buntu (Sta 0+000 - Sta 1+122)	63
Gambar 12-h	Analisis Voids pada PPCP 5 Strand (M 5)	64
Gambar 12-i	Analisis Voids pada PPCP 4 Strand + Wire Mesh (M4)	64
Gambar 12-j	Analisis Voids pada Beton Karet PCP Pracetak (M3)	65

Gambar 12-k	Analisis <i>Voids</i> pada Beton Konvensional Cor Di tempat (M6b)	65
Gambar 12-l	Analisis Voids pada Beton Fiber Cor Di Tempat (M2)	66
Gambar 12-m	Analisis <i>Voids</i> pada Beton Prategang <i>Post Tensioned</i> Cor Di Tempat (M6a)	66
Gambar 12-n	Analisis Voids pada PPCP 4 <i>Strand</i> + <i>Wire Mesh</i> (M4) Terindikasi <i>Void</i>	67
Gambar 12-o	Analisis <i>Voids</i> pada Beton Prategang <i>Post Tensioned</i> Cor Di Tempat (M6a) Terindikasi <i>Void</i>	67
Gambar 12-p	Lendutan (D1) pada Perkerasan Beton, Buntu-Kebumen (Sta 1+122 - Sta 0+000)	71
Gambar 12-q	Kemungkinan Rongga pada Approach edge panel pada PPCP (M5)	71
Gambar 12-r	Kemungkinan Tidak Ada Rongga pada <i>Approach edge</i> panel pada PPCP (M4)	72
Gambar 12-s	Kemungkinan Tidak Ada Rongga pada <i>Approach edge</i> panel pada PCP Karet (M3)	72
Gambar 12-t	Kemungkinan <mark>Tidak Ada Ro</mark> ngga pada Segmen Beton CIP (M6b)	73
Gambar 12-u	Kemungkinan Tidak Ada Rongga pada PCP Konvensional (M1)	73
Gambar 12-v	K <mark>emu</mark> ngkinan Tidak Ada Rongga pada Beton <i>Fiber</i> (M2)	74
Gambar 12-w	Kemungkinan Tidak Ada Rongga pada PSCP PascaTarik (M6a)	74
Gambar 12-x	Kemungkinan Ada Rongga pada PPCP (M5)	75
Gambar 12-y	Kemungkinan Masih Ada Rongga pada PPCP (M4)	75
Gambar 12-z	Kemungkinan Masih Ada Rongga pada PCP (M3)	76
Gambar 12-aa	Kemungkinan Masih Ada Rongga pada PCP (M1) di AE	76
Gambar 12-bb	Kemungkinan masih ada rongga pada beton prategang post tensioned cor di tempat (M6a)	77
Gambar 13-a	Lalu Lintas Harian Rata-rata Tahun 2010 dan Tahun 2012	78
Gambar 14-a	Perkembangan Retak Melintang pada bahu beton (Maret 2010 s/d Agustus 2012)	79
Gambar 14-b	Foto kondisi bahu beton per Agustus 2012	79

Daftar Isi xiii

Gambar 15-1	Foto kondisi drainase jalan pada saat pelaksanaan	80
Gambar 15-2	Foto kondisi drainase umur 2 bulan (kiri) dan 1 tahun (kanan, rebah 32 m)	80
Gambar 16-a	Hasil Uji Kuat Tekan Perkerasan dan Bahu Beton	81
Gambar 16-b	Hasil Pengukuran Tebal Perkerasan dan Bahu Beton	81
Gambar 17-a	Foto retak vertikal pada beton serat (M2) nomor 20 (Juni 2012)	82
Gambar 17-b	Foto retak vertikal pada beton serat (M2) nomor 12 (Juni 2012)	82
Gambar 17-c	Foto retak vertikal pada beton karet (M3) nomor 17 (Juni 2012)	82
Gambar 17-d	Foto retak vertikal pada beton pracetak konvensional (M1) nomor 57 (Juni 2012)	82
Gambar 18-a	Kondisi Jalan Tol Kanci-Pejagan (Agustus 2010)	85
Gambar 18-b	Tipikal Kondisi Satu Segmen Jalan Tol Kanci-Pejagan Jalur A	85
Gambar 18-c	Perkembangan retak memanjang dan melintang beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)	86
Gambar 18-d	Perkemb <mark>angan ret</mark> ak sudut beton pracetak-prategang sam <mark>pai um</mark> ur 30 bulan (Tol Kanci-Pejagan)	87
Gambar 18-e	Perkembangan spalling beton pracetak-prategang sampai u <mark>mu</mark> r 30 bulan (Tol Kanci-Pejagan)	88
Gambar 18-f	Perkembangan pumping beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)	88
Gambar 18-g	Perkembangan retak buaya beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)	89
Gambar 18-h	Perkembangan faulting beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)	89
Gambar 18-i	Perkembangan kerusakan bentuk lubang pada beton pracetak-prategang sampai umur 30 bulan (Tol Kanci- Pejagan)	90
Gambar 18-j	Perkembangan tambalan pada beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)	91
Gambar 18-k	Perkembangan amblas pada beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)	91

Gambar 19-a	Foto perbaikan full depth pada Base Panel	92
Gambar 19-b	Foto penutupan retak pada <i>Joint Panel</i> (JP)	92
Gambar 19-c	Foto kerusakan pada <i>bint Panel</i> yang belum ditangani	92
Gambar 19-d	Foto perbaikan <i>Joint Panel</i> dgn metode beton Tterbalik	92
Gambar 20-a	Posisi <i>Joint Panel</i> , <i>Base Panel</i> dan <i>Central Panel</i> di Tol Kanci Pejagan	93
Gambar 20-b	Ilustrasi faulting karena rongga di bawah sambungan	93
Gambar 20-c	Foto JP retak dan dowel patah	94
Gambar 21-a	Profil Kondisi Rongga di bawah <i>Joint Panel</i>	94
Gambar 21-b	Profil Kondisi <i>Joint Panel</i> : Rongga di bawah Sambungan, <i>Pumping</i> , Dowel Patah, dan Retak	94
Gambar 22-a	Foto pumping kerusakan pada <i>bint Panel</i> (retak, <i>sealant</i> hilang, <i>pumping</i> , dowel rusak/patah)	94
Gambar 22-b	Foto kerusakan pada <i>bint Panel</i> (retak, <i>sealant</i> hilang, <i>pumping</i> , dowel rusak/patah)	95
Gambar 23-a	Beton <i>Inverted T Patch</i> Cor di Tempat dan Fondasi Granular	95
Gambar 23-b	Foto sambungan <mark>Muai pada J</mark> P	96
Gambar 23-c	Foto pe <mark>mbongkara</mark> n Panel	96
Gambar 23-d	Foto <mark>pembo</mark> ngkaran fondasi dan Timbunan	96
Gambar 23-e	Fo <mark>to pe</mark> nghamparan Fondasi Granular	96
Gambar 23-f	F <mark>oto</mark> pemadatan Fondasi Granular	96
Gambar 23-g	Foto pembesian dan Pengecoran Seeper Sab	96
Gambar 23-h	Foto pembesian End Panel Base	96
Gambar 23-i	Foto pengecoran End Panel Base	96
Gambar 23-j	Foto perataan permukaan	97
Gambar 23-k	Foto perawatan Panel	97
Gambar 23-I	Foto pengerjaan sambungan muai pada lajur cepat	97
Gambar 23-m	Foto kondisi setelah selesai	97
Gambar 23-n	Pondasi granular dan drainase bawah-permukaan	98
Gambar 24-a	Voids – Intercept setelah perbaikan dengan Inverted T, Jalur A (Jan 2011)	99
Gambar 24-b	Voids Y-Intercept setelah perbaikan dgn Inverted T, Jalur B (Jan 2011)	100

Daftar Isi xv

Gambar 24-c	Tipikal kondisi <i>Void Y-Intercept</i> JP 40, sebelum dan sesudah pemasangan <i>Inverted T Concrete</i>	100
Gambar 24-d	Tipikal kondisi <i>Void Y-Intercept</i> JP 236 sebelum dan sesudah pemasangan <i>Inverted T Concrete</i>	101
Gambar 25-a	Pencatatan kondisi permukaan dan <i>joint panel</i> beton pracetak Nomor JP-03, di Ciasem-Pantura (Juni 2011)	105
Gambar 25-b	Tipikal pencatatan kondisi permukaan dan <i>joint panel</i> beton pracetak Nomor JP-03, di Ciasem-Pantura (Agustus 2012)	106
Gambar 25-c	Tipikal pencatatan kondisi permukaan dan <i>joint panel</i> beton pracetak Nomor JP-10, di Gasem-Pantura (Juni 2011)	106
Gambar 25-d	Tipikal pencatatan kondisi permukaan dan <i>joint panel</i> beton pracetak Nomor JP-10, di Ciasem-Pantura (Agustus 2012)	107
Gambar 25-e	Retak melintang per segmen (September 2012)	108
Gambar 25-f	Retak melintang dan <mark>memanj</mark> ang (September 2012)	108
Gambar 25-g	Retak memanjang panel (September 2012)	109
Gambar 25-h	Perkembangan retak sudut per segmen (September 2012)	110
Gambar 25-i	Perk <mark>emban</mark> gan retak sudut (September 2012)	110
Gambar 25-j	Perkembangan Retak <i>Irregular</i> per segmen (September 2 <mark>012</mark>)	111
Gambar 25-k	Perkembangan retak <i>Irregular</i> (September 2012)	111
Gambar 25-I	Perkebangan Retak Buaya per segmen (September 2012)	112
Gambar 25-m	Perkebangan retak buaya (September 2012)	112
Gambar 25-n	Perkembangan <i>spalling</i> per segmen (September 2012)	113
Gambar 25-o	Perkembangan spalling (September 2012)	113
Gambar 25-p	Perkembangan <i>pumping</i> per segmen (September 2012)	114
Gambar 25-q	Pumping terdeteksi terus sampai umur 30 bulan (Sept.2012)	114
Gambar 25-r	Perkembangan lubang per segmen (September 2012)	115
Gambar 25-s	Perkembangan lubang (September 2012)	115
Gambar 25-t	Perkembangan tambalan per segmen (September 2012)	116
Gambar 25-u	Perkembangan tambalan (September 2012)	116

Gambar 26-a	Lokasi CRCP dan JRCP di tol Tangerang-Merak Km 44+350 s/d Km 45+375 (Jkt)	119
Gambar 26-b	Tipikal kondisi jalan di Tol Tangerang-Merak setelah dilapis AC-WC di atas CRCP dan JRCP (2011)	120
Gambar 26-c	Awal pelaksanaan monitoring CRCP Km 44+350 (Jkt)	120
Gambar 26-d	Tipikal kondisi jalan di Tol Tangerang-Merak sebelum dipasang CRCP (2011)	121
Gambar 26-e	Tipikal sambungan JRCP dan CRCP di Tol Tangerang-Merak setelah dipasang AC-WC(2011)	122
Gambar 26-f	Sambungan antara CRCP dan JRCP	123
Gambar 27-a	Acuan tetap siap di set	126
Gambar 27-b	Acuan tetap dari kayu untuk pekerjaan kecil	127
Gambar 27-c	Pemancangan Pin Menggunakan Jackhammer dan Pin yang Sudah Terpancang	128
Gambar 27-d	Acuan tepi	129
Gambar 27-e	Foto lengkungan/bel <mark>okan jala</mark> n	130
Gambar 27-f	Roller screed	131
Gambar 27-g	Roller screed sedang beroperasi	131
Gambar 27-h	Self-propelled roller screed	131
Gambar 27-i	Tie bar dipasang manual	131
Gambar 27-j	V <mark>ibra</mark> ting screed	132
Gambar 27-k	A Clary or Roller Screed	132
Gambar 27-l	Traversing roller tube paver	132
Gambar 27-m	Sstem acuan tetap pada pelaksanaan JRCP dan CRCP	133
Gambar 27-n	Apollo Fixed Form Concrete Paver di India	133
Gambar 27-o	Hand operated vibrator	134
Gambar 27-p	Pelepa (floating)	135
Gambar 27-q	Straightedge	135
Gambar 27-r	Pelepa (floating) sedang dioperasikan	135
Gambar 27-s	Tining secara manual	135
Gambar 28-a	Acuan bergerak untuk perkerasan jalan beton	140
Gambar 28-b	Acuan bergerak untuk perkerasan jalan beton ukuran sedang	140

Daftar Isi xvii

Gambar 28-c	Acuan bergerak untuk pagar pengaman	140
Gambar 28-d	Acuan bergerak untuk separator	140
Gambar 28-e	Acuan bergerak untuk parapet	140
Gambar 28-f	Acuan bergerak dengan satu auger	142
Gambar 28-g	Acuan bergerak dengan dua auger	142
Gambar 28-h	Acuan bergerak pada trek	143
Gambar 28-i	Lajur trek	143
Gambar 28-j	Sensor elektronik pada acuan bergerak	145
Gambar 28-k	Sensor horizontal dan vertikal	145
Gambar 28-I	Tampak samping mesin acuan bergerak	145
Gambar 28-m	Panduan Kawat pengendali	146
Gambar 28-n	Kawat pengendali	146
Gambar 28-o	Auger	147
Gambar 28-p	Auger dan penyebaran beton	147
Gambar 28-q	Vibrator terbenam (Immersion Vibrators)	148
Gambar 28-r	Bagian bawah acuan bergerak	148
Gambar 28-s	Posisi Vibrator yang disarankan	148
Gambar 28-t	Zon <mark>a vibras</mark> i dalam beton	148
Gambar 28-u	G <mark>oresan</mark> vibrator yang tidak bekerja dengan benar	149
Gambar 28-v	Pelepa perata di bawah mesin penghampar acuan bergerak	149
Gambar 28-w	Pelepa silinder (Tube Floats)	150
Gambar 28-x	Pelepa memanjang	150
Gambar 28-y	Pelepa bentuk "V" yang ditarik mesin	150
Gambar 28-z	Roskam tangan (<i>Hand Trowel</i>) untuk yang sulit dijangkau mesin	150
Gambar 28-aa	Penekanan alat pelepa (Bull float)	151
Gambar 28-bb	Straightedge Finishing	152
Gambar 28-cc	Pulling the straightedge – keeping the handle high	152
Gambar 28-dd	Pushing the straightedge – keeping the handle low	152
Gambar 28-ee	Straightedging behind a longitudinal float	152
Gambar 28-ff	Karpet Astroturf yang jatuh bebas di atas beton	153

Gambar 28-gg	Karpet Astroturf yang dipasang pada mesin	153
Gambar 28-hh	Karpet Astroturf yang terlipat	153
Gambar 28-ii	Permukaan yang ditekstur dengan alat Tining	154
Gambar 28-ii	Mechanical Tining Device	154

Daftar Isi xix

Daftar Istilah

bahan grouting (bedding grout)

Bahan *grouting* yang diinjeksikan melalui saluran yang disediakan, dipompakan ke bawah panel untuk mengisi semua rongga (*voids*) sehingga panel disokong sepenuhnya di atas pondasi yang rata.

batang pengikat (tie bar)

sepotong baja ulir yang dipasang pada sambungan memanjang dengan maksud untuk mengikat pelat agar tidak bergerak horizontal (Pd T-05-2004-B).

beton fiber atau beton bertulang serat (BBS)

- Fiber Reinforced Concrete (FRC)
- bahan komposit terdiri atas campuran semen, mortar atau beton, serat terpisah (discrete) yang seratnya terdispersi merata;
- beton yang mengandung bahan berserat pendek terpisah yang tercampur merata dan berorientasi secara acak, dapat meningkatkan integritas struktur; pada serat yang berbeda, perubahan karakter BBS bervariasi, tergantung pada jenis bahan serat, geometri, distribusi, orientasi dan kepadatan.

beton semen pracetak (precast concrete)

struktur yang terdiri atas pelat beton semen yang bersambung (tidak menerus) dilakukan pra-tegang (pre-stressed) atau tanpa prategang, dibuat menggunakan cetakan berukuran tertentu di tempat atau di unit produksi beton.

evaluasi

proses penilaian pencapaian tujuan dan pengungkapan masalah kinerja kegiatan pekerjaan (proyek) untuk memberikan umpan balik bagi peningkatan kualitas kinerja program atau kegiatan pekerjaan.

fiber polimer sintetis

Fiber Reinforced Polymer (FRP)

Daftar Istilah xxi

serat berbentuk batang, untaian kawat (*strand*) terbuat dari serat polimer yang diperkuat; awalnya, "P" dalam FRP diartikan sebagai "plastik," tetapi sekarang "polimer" sebagai istilah yang lebih disukai untuk menghindari kebingungan. (ACI *Education Bulletin* E2-00, *Reapproved* 2006).

grouting

mengisi celah kosong atau retakan pada beton atau tembok batu bata dengan adonan berbahan semen dan bahan lainnya yang dapat dituangkan atau dipompakan.

kinerja perkerasan jalan

suatu penurunan kondisi perkerasan jalan selama periode yang dianalisis akibat lalu lintas dan faktor lainnya.

lapisan dasar (bedding-course)

lapisan agregat berukuran tertentu yang ditempatkan di bawah panel pracetak agar permukaannya datar sesuai dengan profil yang diinginkan.

monitoring

proses pengumpulan dan analisis informasi (berdasarkan indikator yg ditetapkan) secara sistematis dan kontinu tentang kegiatan program/proyek sehingga dapat dilakukan tindakan koreksi untuk penyempurnaan program/proyek itu selanjutnya.

pemeliharaan rutin.

koreksi sedini mungkin terhadap bagian-bagian perkerasan yang rusak. (Caltran, FHWA, 2007, 1-2).

perawatan (curing) beton

tindakan yang diambil untuk mempertahankan kondisi lembab dan temperatur beton yang baru ditempatkan, dan memungkinkan terjadi hidrasi semen hidrolis dan reaksi pozolan sehingga sifat beton dapat berkembang (ACI Concrete Terminolgy).

perkerasan jalan beton bersambung tanpa tulangan (jointed plain/unreinforced concrete pavement, JPCP)

jenis perkerasan jalan beton semen yang dibuat tanpa tulangan dengan ukuran pelat mendekati bujur sangkar, dimana panjang dari pelatnya dibatasi oleh adanya sambungansambungan melintang. Panjang pelat dari jenis perkerasan ini berkisar antara 4 meter dan 5 meter.

perkerasan jalan beton semen bersambung dengan tulangan (jointed reinforced concrete pavement, JRCP)

jenis perkerasan jalan beton semen yang dibuat dengan tulangan dengan ukuran pelat berbentuk empat persegi panjang, dimana panjang dari pelatnya dibatasi oleh adanya sambungan-sambungan melintang. Panjang pelat dari jenis perkerasan ini berkisar antara 8 meter dan 15 meter.

perkerasan jalan beton semen menerus dengan tulangan (continuously reinforced concrete pavement, CRCP)

jenis perkerasan jalan beton semen yang dibuat dengan tulangan dan dengan panjang pelat yang menerus yang hanya dibatasi oleh adanya sambungan-sambungan muai melintang; panjang pelat dari jenis perkerasan ini lebih besar dari 75 meter.

perkerasan jalan beton semen prategang (pre-stressed concrete pavement, PSCP)

jenis perkerasan jalan beton semen menerus, tanpa tulangan yang menggunakan kabel-abel pratekan guna mengurangi pengaruh susut, muai dan lenting akibat perubahan temperatur dan kelembaban.

perkerasan jalan beton semen

suatu struktur perkerasan yang umumnya terdiri atas tanah dasar, lapis pondasi bawah dan lapis beton semen dengan atau tanpa tulangan (Pd T-05-2004-B).

rasio aspek serat (fiber)

rasio antara panjang dan diameter serat, berkisar sekitar 30 atau 150.

ruji (dowel)

sepotong baja polos lurus yang dipasang pada setiap jenis sambungan melintang dengan maksud sebagai sistem penyalur beban, sehingga pelat yang

Daftar Istilah xxiii

berdampingan dapat bekerja sama tanpa terjadi perbedaan penurunan yang berarti (Pd T-05-2004-B).

saluran grouting (grouting channel)

Saluran untuk menyuntik cairan bahan *grouting* dan menyebarkannya ke bawah panel secara tepat.

sambungan lidah-alur (shear-kev)

jenis sambungan pelaksanaan yang sistim pengatur bebannya digunakan hubungan lidah-alur (Pd T-05-2004-B).

serat

- bagian kecil dari material yang memiliki sifat memperkuat karakteristik tertentu, dapat berbentuk melingkar atau flat, sering digambarkan dengan parameter "rasio aspek serat".
- termasuk serat baja, serat kaca, serat sintetis dan serat alami.
- secara umum, dimensi serat bervariasi sekitar panjang (0,25 2,5) inci (6 – 64) mm dan diameter sekitar 0,3 mm.
- anyaman serat, serat yang ditenun dan serat berbentuk batang yang panjang tidak dianggap sebagai serat terpisah.

seting (setting) beton

kuat awal beton.

stabilisasi

suatu tindakan perbaikan mutu bahan atau meningkatkan kekuatan bahan sampai kekuatan tertentu agar bahan tersebut dapat berfungsi dan memberikan kinerja yang lebih baik dari pada bahan aslinya.

steam curing

perawatan beton, mortar, atau pasta semen menggunakan uap air pada tekanan atmosfer atau lebih tinggi dan pada temperatur tertentu agar pengerasan beton dicapai lebih cepat. (ACI Concrete Terminolgy).

Bab-

PENDAHULUAN

1.1 Latar Belakang

1.1.1. Perkerasan Beton Semen

Perkerasan jalan beton semen di Indonesia telah diaplikasikan sejak tahun 1980 dan berkembang sampai sekarang. Beton semen dipilih sebagai alternatif karena lebih tahan terhadap beban berat serta dapat dirancang untuk dapat melayani beban lalu lintas sampai 25 tahun atau lebih, walaupun biaya awal relatif lebih tinggi dibandingkan dengan perkerasan beraspal. Perkerasan jalan beton semen di Indonesia pada umumnya dilaksanakan dengan cara cor di tempat (cast in place, CIP). Untuk meningkatkan kemudahan kerja (workability) dan meningkatkan kekuatan, beton dapat dicampur dengan suatu bahan tambah (admixtures) tertentu atau dilakukan suatu perkuatan dengan baja tulangan atau dengan baja prategang. Jalan beton konvensional CIP pada umumnya dilaksanakan di jalan kabupaten, jalan kota, jalan nasional, dan bahkan di jalan tol. Pelaksanaan di lapangan pada umumnya menggunakan acuan tetap (fixed form), sedang penggunaan acuan gelincir atau dikenal dengan acuan bergerak (slip form) relatif jarang digunakan. Acuan tetap digunakan pula di jalan tol. Bila menggunakan acuan bergerak di jalan tol, acuan tetap digunakan pula untuk lokasi yang tidak memungkinkan menggunakan acuan bergerak. Uraian lebih lanjut penggunaan penghampar beton jenis acuan tetap dan acuan bergerak dapat diikuti dalam Bab 6. Dalam beberapa tahun terakhir muncul masalah kinerja yang rendah karena antara lain terkait dengan mutu pelaksanaan, mutu pengawasan, dan pemeliharaan.

1.1.2. Perkerasan Beton Pracetak-Prategang

Pada tahun 2006 telah dibangun perkerasan jalan beton semen dengan bentuk panel-panel yang sudah jadi (pracetak) pertama di Indonesia, yaitu di Jalan Cakung-Cilincing, Jakarta, sepanjang sekitar 1000 meter untuk setiap arah lalu lintas. Rancangan panel beton semen pracetak tersebut diberi prategang pratarik. Model panel beton ini diprogramkan untuk perbaikan atau peningkatan kinerja pada ruas jalan yang lalu lintasnya berat dan padat agar tidak memerlukan masa perawatan (*curing*) beton yang lama sehingga dapat segera dibuka untuk lalu lintas. Mengingat jalan beton pracetak tersebut relatif baru maka jalan beton pracetak ditetapkan sebagai salah satu objek yang dimonitor, dievaluasi dan dikaji aspek pemeliharaannya untuk dimanfaatkan dalam pengembangan jalan beton di Indonesia.

Yang dimaksud dengan perkerasan beton semen pracetak (*precast*) adalah struktur yang terdiri atas pelat beton semen yang bersambung (tidak menerus) dilakukan prategang (*pre-stressed*) atau tanpa prategang, dibuat menggunakan cetakan berukuran tertentu di tempat atau di unit produksi beton, yang setelah mencapai kekuatan tertentu diangkut atau dipindahkan ke tempat penyimpanan atau dipasang di atas tanah dasar atau fondasi bawah yang rata, tanpa atau dengan pengaspalan.

Beton-Pracetak-prategang adalah beton pracetak yang tegangan tariknya pada kondisi pembebanan tertentu dihilangkan atau dikurangi sampai batas aman dengan pemberian gaya tekan permanen. Baja prategang yang digunakan untuk keperluan ini dilakukan pratarik sebelum beton dituangkan ke dalam cetakan. Perhitungan tebal beton pracetak (tanpa prategang) adalah sama dengan perhitungan tebal beton secara konvensional atau cor di tempat. Dengan prategang, tebal beton pracetak menjadi lebih tipis sekitar (50 – 65) % dari pada cara konvensional (AASHTO, 1993). Perkerasan beton semen cor di tempat dapat dibuat dalam kondisi prategang sepanjang maksimum 180 m (*American Concrete Institute, ACI 325.7R-88*).

1.1.3. Monitoring dan Evaluasi

Monitoring adalah proses pengumpulan dan analisis informasi (berdasarkan indikator yang ditetapkan) secara sistematis dan kontinu tentang kegiatan program/proyek sehingga dapat dilakukan tindakan koreksi untuk penyempurnaan program/proyek itu selanjutnya. Tujuan monitoring adalah:

- Mengkaji apakah kegiatan-kegiatan yang dilaksanakan telah sesuai dengan rencana.
- Mengidentifikasi masalah yang timbul agar langsung dapat diatasi.
- Melakukan penilaian apakah pola kerja dan manajemen yang digunakan sudah tepat untuk mencapai tujuan proyek.
- Mengetahui kaitan antara kegiatan dengan tujuan untuk memperoleh ukuran kemajuan,
- Menyesuaikan kegiatan dengan lingkungan yang berubah, tanpa menyimpang dari tujuan.

Salah satu manfaat kegiatan monitoring adalah membantu untuk mempersiapkan laporan dalam waktu yang singkat, mengetahui kekurangan-kekurangan yang perlu diperbaiki dan menjaga kinerja yang sudah baik, dan sebagai dasar (informasi) yang penting untuk melakukan evaluasi kegiatan pekerjaan.

Evaluasi adalah proses penilaian pencapaian tujuan dan pengungkapan masalah kinerja suatu kegiatan pekerjaan, untuk memberikan umpan balik bagi peningkatan kualitas kinerja program atau kegiatan pekerjaan. Tujuan evaluasi adalah:

- Memperlihatkan keberhasilan atau kegagalan kegiatan pekerjaan (proyek)
- Menunjukkan di mana dan bagaimana perlu dilakukan perubahan perubahan
- Menentukan bagaimana kekuatan atau potensi dapat ditingkatkan.
- Memberikan informasi untuk membuat perencanaan dan pengambilan keputusan.
- Membantu untuk dapat melihat konteks secara lebih luas serta implikasinya terhadap kinerja pembangunan.

1.2. Permasalahan

1.2.1. Permasalahan Pokok, Sumber Variabel dan Independensi Obyek yang Dimonitor

Salah satu obyek yang dimonitor pada perkerasan beton semen ini ada di Buntu-Kebumen, Jawa Tengah. Obyek ini ditetapkan sebagai variabel yang dianalisis, dan merupakan prototip jalah beton semen pracetak dan pracetak-prategang dengan ukuran slab tertentu.

Dua kondisi perkerasan beton normal (dengan *wire mesh* dan tanpa *wire mesh*), panjang masing-masing 12 m dibuat secara pracetak dan diberi prategang dengan pratarik (*pretension*), sedang dua kondisi lainnya yaitu beton normal panjang (5 m dan 10 m), dan beton dengan bahan tambah karet (10 m) dibuat secara pracetak tanpa diberikan prategang.

Satu kondisi beton yang dicampur dengan fiber dan dicor di tempat, dibuatkan takikan sebagai jarak retak dengan jarak yang bervariasi mulai dari 10 m sampai dengan 30 m. Satu kondisi beton normal dengan panjang 100 meter dicor di tempat dan pada kekuatan tertentu dilakukan prategang dengan pasca tarik (post-tension). Perkerasan beton semen yang dicor di tempat menggunakan cetakan dengan acuan tetap (fixed form). Uraian lebih lanjut penggunaan penghampar beton jenis acuan tetap dapat diikuti dalam Bab 6.1

1.2.2. Pelaksanaan Pemadatan dan Penyelesaian Akhir Perkerasan Beton Semen

Pemadatan dan penyelesaian akhir permukaan beton semen yang dihampar merata diberikan getaran dan tusukan-tusukan denan alat yang sesuai sehingga pembentukan rongga setempat atau sarang lebah (honeycombing) dalam beton dapat dihindari. Pada saat yang sama, pemadatan yang berlebihan perlu dihindari karena dapat menyebabkan segregasi dan kehilangan udara yang diperlukan dalam beton (air-entrained). Kondisi tersebut perlu kajian untuk pelaksanaan menggunakan acuan tetap (fixed form) dan acuan bergerak (slip form).

1.3. Metode uji dan pengukuran

Monitoring dilakukan dengan melakukan penilaian kondisi permukaan dan sambungan antar panel secara visual, pengukuran defleksi vertikal pada tepi sambungan dan tepi retak yang ada menggunakan alat *Falling Weight Deflectometer (FWD)*, pengukuran ketidakrataan dengan alat *roughness (Naasra Roughometer)*, pengukuran kedalaman tekstur dengan metoda tambalan pasir (*Sand Patch*), pengukuran kelicinan dengan alat pendulum (*British Pendulum Tester*). Pengukuran gradien temperatur perkerasan beton, pengujian daya dukung tanah dasar dan fondasi dengan alat *Dynamic Cone Penetrometer* (DCP) untuk mengetahui nilai CBR, serta pengukuran permeabilitas pada sambungan dan retak yang ada.

Monitoring juga dilakukan pada pelaksanaan jalan beton cor di tempat yang menggunakan acuan tetap dan acuan bergerak.

1.4. Lokasi

Perkerasan jalan beton dan jalan beton pracetak yang dimonitoring meliputi lokasi-lokasi berikut:

- a. Perkerasan jalan beton di Buntu-Kebumen, yaitu jalan uji-coba skala penuh yang dibangun pada akhir tahun 2009. Variasi perkerasan beton meliputi jalan beton pracetak-prategang, jalan beton karet pracetak, jalan beton pracetak konvensional, jalan beton cor di tempat konvensional, jalan beton fiber cor di tempat dan jalan beton prategang pasca tarik cor di tempat.
- b. Perkerasan beton pracetak prategang di jalan tol Kanci-Pejagan (2009).
- c. Perkerasan beton pracetak prategang di ruas jalan Ciasem (Pantai Utara Jawa Barat, 2010).
- d. Perkerasan beton bertulang menerus (continuous reinforced concrete pavement, CRCP) di ruas jalan tol Tangerang-Merak (2012)

Lokasi lainnya yang telah dikaji dan dievaluasi adalah di ruas jalan kota Cakung-Cilincing (2006) sepanjang sekitar 1000 meter, terbagi dalam empat segmen. Jalan tersebut menggunakan beton pracetak prategang pertama di

Indonesia yaitu dalam upaya pemerintah untuk mengatasi kerusakan jalan di ruas tersebut yang acapkali rusak akibat lalu lintas kendaraan yang berat dan padat dari/ke pelabuhan Tanjungpriok, Jakarta. Sebagian besar ruas jalan arah ke Tanjungpriok sudah dibangun jalan tol dalam kota Jakarta.

Pelaksanaan cor di tempat di jalan tol menggunakan acuan bergerak (jalan lingkar luar Jakarta). Monitoring pelaksanaan jalan beton semen yang menggunakan acuan tetap dilakukan di jalan Tol Jakarta — Merak, dan beberapa lokasi jalan kota dan jalan kabupaten di Jawa Barat.

1.5. Upaya Umum Pendekatan Penyelesaian Masalah dan Efektifitasnya

Berdasarkan hasil monitoring, dilakukan upaya mengevaluasi kinerja perkerasan jalan beton. Evaluasi tersebut meliputi:

- a. **Evaluasi awal kegiatan**, yaitu penilaian terhadap kesiapan kegiatan pekerjaan atau mendeteksi kelayakan kegiatan pekerjaan.
- b. Evaluasi formatif, yaitu penilaian terhadap hasil-hasil yang telah dicapai selama proses kegiatan dilaksanakan. Waktu pelaksanaan dilaksanakan secara terjadwal sesuai dengan kebutuhan informasi hasil penilaian.
- c. Evaluasi sumatif, yaitu penilaian hasil-hasil yang telah dicapai secara keseluruhan dari awal kegiatan sampai akhir kegiatan. Waktu pelaksanaan pada saat akhir kegiatan pekerjaan sesuai dengan jangka waktu kegiatan dilaksanakan. Untuk kegiatan yang memiliki jangka waktu satu tahun, maka evaluasi sumatif dilaksanakan menjelang akhir tahun. Evaluasi untuk menilai dampak kegiatan, dapat dilaksanakan setelah kegiatan berakhir dan diperhitungkan dampaknya terhadap yang sudah terlihat nyata.

1.6. Teknik Monitoring dan Analisis Data

1.6.1. Pengumpulan Data

1.6.1.1. Kondisi Visual Perkerasan Jalan Beton

Perkerasan jalan beton pracetak dan jalan beton cor di tempat dilakukan penilaian kondisi secara visual (*Pavement Condition Survey, PCS*) dan pemetaan kerusakan (*distress maps*) mengikuti manual *SHRP-P-338* (1993), sebelum dan sesudah dilalui kendaraan. Manual tersebut digunakan untuk penilaian kondisi jalan beton bersambung dengan/tanpa tulangan, atau *jointed plan/unreinforced concrete pavement* (JPCP) dan *jointed reinforced concrete pavement* (JRCP), meliputi jenis kondisi kerusakan sebagai berikut:

a. Retak

- 1) Retak sudut (corner break), Jumlah ((L, M, H)
- 2) Retak durabilitas (*durability "D" cracking*), jumlah panel, m² (L, M, H)
- 3) Retak memanjang (longitudinal cracking); meter (L, M, H)
- 4) Retak melintang (*transvere Cracking*), meter (L, M, H)

b. Sambungan tidak sempurna (Joint deficiencies)

- 1) Kerusakan perapat sambungan (*sealant*)
 - a. Melintang (Joint seal damage of transvere joint); Jumlah (L, M, H), dan,
 - b. Memanjang (Joint seal damage of longitudinal joint), meter;
- 2) Pecah memanjang (*Spalling of longitudinal joint*), meter (L, M, H);
- Pecah melintang (Spalling of transvere joint), jumlah, meter (L, M,
 H)

c. Cacat Permukaan (Surface defects)

- Retak bentuk peta dan/atau mengelupas(Map cracking and/or Scaling), m²
- 2) Permukaan agregat licin (Polished aggregate),jumlah, m²;

3) Butir agregat menyembul (Popout), jumlah, m².

d. Kerusakan lainnya (Miscellaneous distress)

- 1) Menekan ke atas (*Blowup*), jumlah;
- 2) Beda tinggi pada sambungan melintang dan retak (*Faulting of transvere joint and cracks*) (tidak digambar dalam peta kerusakan)
- 3) Beda tinggi antara panel dan bahu (Lane-to-shoulder dropoff), mm.
- 4) Celah antara panel dan bahu terpisah (*Lane-to shoulder separation*), mm.
- 5) Tambalan (*Patch/patch deterioration*), jumlah dan luas (m²), (L, M, H)
- 6) Berair (Water bleeding) dan memompa (pumping), jumlah dan panjang (meter).

KETERANGAN: L = Low; M = Medium; H = High

Untuk perkerasan beton menerus dengan tulangan (*Continuously Reinforced Concrete Pavements, CRCP*) tidak dikenal jenis kerusakan retak sudut, pecah pada sambungan melintang (*spalling of transverse joints*), dan sambungan yang tidak sempurna (*joint deficiencies*), kecuali kerusakan akibat pelaksanaan pada sambungan melintang (*transvere construction joint deterioration*), dan menekan amblas (*punchouts*).

Beberapa modifikasi penilaian kondisi untuk perkerasan beton pracetak dan pracetak-prategang, pencatatan dilakukan secara kuantitatif untuk mempermudah evaluasi terhadap kinerja yang diukur. Misalnya, untuk mengukur prosentase jumlah retak melintang, retak memanjang, spalling, faulting, dan beda tinggi bahu-panel, diukur berdasarkan panjang terhadap luas satu variasi perkerasan beton, sehingga satuan yang digunakan menjadi cm/m². Retak "D" atau durabilitas, scalling, polished aggregate, dan tambalan dengan satuan cm²/m².

1.6.1.2. Ketidakrataan (Roughness)

Pengukuran ketidakrataan permukaan jalan dengan alat *Walking Profiler* (WP) sebagai pengganti alat *Bump Integrator* (BI) pada umumnya digunakan untuk mengkalibrasi alat yang dikembangkan oleh NASRAA (*National Association of Australian State Road Authorities*). Alat WP atau BI dilakukan dengan berjalan kaki, sedangkan alat Naasra dengan kendaraan, digunakan untuk memeriksa ketidakrataan seluruh ruas jalan secara cepat. Kendaraan alat NASRAA melaju dengan kecepatan standar 32 km/h. Data akan tercatat secara otomatis untuk setiap jarak yang diinginkan. Posisi alat WP atau kendaraan melaju pada jalur jejak roda luar. Lihat Gambar 1-. Ketidakrataan dinyatakan dengan *International Roughness Index* (IRI) maksimum 4 m/km.

Gambar 1-a. Alat Walking Profilometer (WP)

1.6.1.3. Kedalaman Tekstur

Sand patch atau uji tambalan pasir menggunakan pasir dengan ukuran dan volume tertentu, ditebarkan merata berbentuk lingkaran di atas permukaan perkerasan yang diukur sehingga seluruh pasir mengisi rongga atau celah permukaan perkerasan. Diameter lingkaran pasir diukur dan kedalaman pasir dapat dihitung dengan membagi volume pasir terhadap luas lingkaran pasir, dalam satuan mm. Pada umumnya batas kedalaman pasir minimum 0,6 mm.

Pengukuran kedalaman tekstur permukaan jalan dapat pula dilakukan dengan alat MTM untuk seluruh panjang jalan yang disurvai. Posisi alat MTM pada jalur jejak roda luar. Pengukuran dengan alat Sand Patch dilakukan pada titik tertentu yang diperlukan. Lihat Gambar 1-b-1 dan Gambar 1-b-2.

Gambar 1-b-1 Alat Ukur Sand Patch

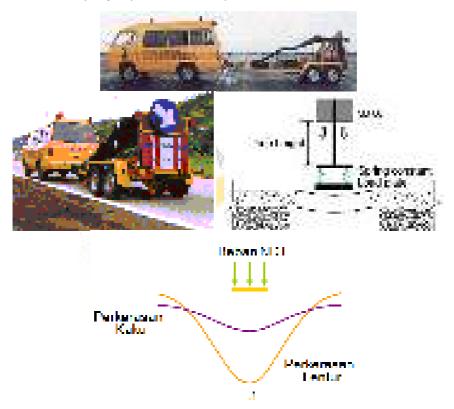
Gambar 1-b-2. Pengukuran dengan Alat Ukur Sand Patch

1.6.1.4. Kelicinan dengan alat British Pendulum Tester (BPT)

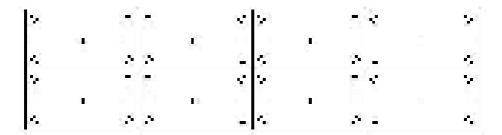
Pengukuran kelicinan permukaan jalan dengan alat *British Pendulum Tester* (BPT). Alat BPT adalah portable digunakan untuk mengetahui tingkat kelicinan pada titik tertentu. Lihat Gambar 1-c-1. Untuk perencanaan, pada umumnya nilai kelicinan yang diukur dengan alat BPT dinyatakan dalam satuan *British Pendulum Number* (BPN). Batas minimum kelicinan adalah 50 BPN.

Gambar 1-c-1. Alat British Pendulum Tester (BPT)

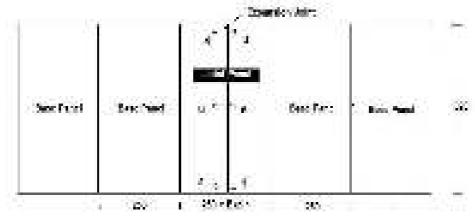
Alat ukur kelicinan lain adalah dengan alat Mu-meter yang diletakkan pada gandengan dan ditarik menggunakan kendaraan yang dilengkapi dengan tangki air. Lihat Gambar 1-c-2. Alat Mu-meter terdiri dari sebuah alat yang dipasang pada chasis trailer, alat ini dilengkapi dengan tiga buah roda. Dua buah roda tanpa kembangan (smooth tread) digunakan untuk mengukur gaya geser dan sebuah roda lagi digunakan untuk mengukur jarak. Pada bagian atas-belakang trailer terdapat sebuah alat pencatat yang dipasang dalam sebuah kotak besi. Alat pencatat ini dihubungkan dengan sebuah pena yang selanjutnya akan mencatat besarnya kekesatan dalam sebuah kertas grafik. Pada saat trailer Mu-meter ditarik oleh kendaraan penarik dua buah roda tanpa kembangan (smooth tread) akan mengalami gaya kesamping sehingga cenderung untuk bergerak saling menjauh. Namun hal ini ditahan oleh sebuah load cell yang dipasang diantara kedua roda. Load cell ini dihubungkan dengan perekam data. Perekam data akan mencatat data tekanan hidrolik dari load cell melalui sebuah capillary tube. Sedangkan pengukuran jarak menggunakan sebuah roda yang terletak dibagian belakang. Pada pencatat data terdapat sebuah integrator yang terhubung dengan pencatat jarak, dari kedua mekanisme tersebut yaitu pencatat gaya dan jarak maka nilai kekesatan rata-rata dapat ditentukan.



Gambar 1-c-2. Alat Pengukur Kelicinan Mu-Meter


1.6.1.5. Lendutan Perkerasan dengan alat FWD

Kondisi struktur meliputi survai lendutan vertikal dengan alat Falling Weight Deflectometer (FWD) pada posisi di sudut panel, tengah bentang dan tepi sambungan perkerasan beton pracetak dan cor di tempat. FWD adalah alat untuk mengukur lendutan perkerasan jalan yang tidak merusak (non destructive testing, NDT) selain alat Benkelman Beam dan alat


Deflectograph yang umum digunakan. Pada pengukuran dengan alat FWD, beban diterapkan melalui pelat baja dan lapisan karet tipis sebagai per. Beban impuls secara efektif dapat distel bervariasi antara 7 dan 120 kN. Sebanyak 7 transducer seismik dalam radius 2 – 3 meter di bawah perkerasan mencatat lendutan yang terjadi. Alat tersebut mengukur lendutan perkerasan akibat beban yang dijatuhkan di atas permukaan. Dalam Gambar 1-d-1 diperlihatkan alat FWD dan mekanisme pembebanan dan lendutan yang dapat dicatat komputer.

Gambar 1-d- 1 Mekanisme Pengukuran Lendutan dengan FWD

Gambar 1-d-2. Tipikal Lokasi Titik Uji dengan alat FWD pada Panel Memanjang

Gambar 1-d-3. Tipikal Lokasi Titik Uji dengan alat FWD pada Panel Melintang

Pengukuran defleksi untuk mengidentifikasi besar lendutan yang terjadi pada sudut, panel tepi panel dan tengah panel. Metoda untuk mengidentifikasi adanya rongga di bawah panel merupakan data utama yang perlu diketahui. Metoda yang dapat digunakan ada dua cara yaitu *The Asphalt Institute* (MS-17, 2000), *Caltran* (2005) atau FWD *Testing Protocol* (*Underseal*). Contoh tipikal posisi titik yang akan diukur dan penempatan nomor titik uji untuk joint panel yang terpasang memanjang dan melintang masing-masing disajikan dalam Gambar 1-d-2 dan Gambar 1-d-3.

1.6.1.6. Bor Inti (Core Drill)

Core drill perkerasan beton untuk uji Kuat tekan, tebal lapisan, baik pada panel maupun bahu jalan dan pondasi bahu jalan (lean concrete).

1.6.2. Teknik Analisis Data

1.6.2.1. Present Serviceability Index (PSI) (AASHTO Road Test)

Berdasarkan data tersebut persamaan untuk mengevaluasi kinerja perkerasan jalan beton semen menggunakan parameter PSI diambil dari AASHTO Road Test (The Design and Performance Of Road Pavements 2nd Edition, David Croney cs, 1992):

$$PSI = 5,41-1,78\log(1+\overline{S}\overline{V}) - 0,09\sqrt{C+P}$$

 \overline{SV} = the slope variance x 10⁶ (rata-rata kedua jalur jejak roda);

 $C = luas retak dalam ft^2$.

 $P = luas tambalan per 1000 ft^2$.

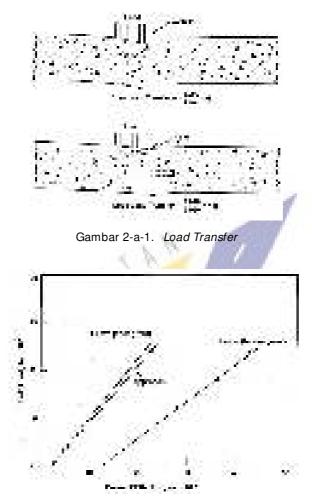
Pengukuran \overline{SV} dapat diganti dengan hasil pengukuran ketidakrataan (*Roughness*) sehingga persamaan menjadi:

$$PSI = 5,41-1,8\log(0,4R-33)-0,99\sqrt{C+P}$$

R = indeks ketidakrataan dalam satuan inci per mil

C = luas retak dalam ft².

 $P = luas tambalan per 1000 ft^2$.

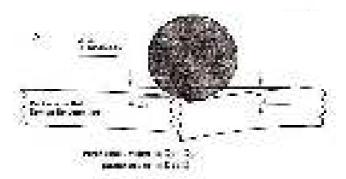

1.6.2.2. Pengukuran Lendutan Perkerasan Jalan

1.6.2.2.1. Metoda AASHTO (1993)

Metoda AASHTO banyak digunakan sebagai referensi sejumlah institusi terkait dengan perencanaan perkerasan jalan, baik oleh *The Asphalt Institute, FHWA, Caltrans* dan institusi lainnya. Beberapa catatan pengukuran lendutan berdasarkan AASHTO 1993 adalah sebagai berikut:

FWD digunakan untuk menganalisis joint load transfer (Lihat Gambar 2-a-1), mendeteksi voids di bawah slab, dan memperkirakan profil lendutan di sudut panel dengan 3 variasi beban (misal 6 kips, 9 kips dan 12 kips). Load transfer adalah rasio antara lendutan tepi slab yang tidak dibebani dengan tepi slab yang dibebani. Selisih besar defleksi yang berpotongan dengan sumbu X (X-intercept) masing-masing slab yang tidak dibebani (leave edge) dan tepi slab yang dibebani (approach edge) kurang dari 50 mikron (2 mils= 0,002 inci) diindikasikan tidak menimbulkan voids (lihat Gambar 2.a.2).

- Contoh diagram defleksi yang diketahui positif terdapat voids kemudian dilakukan *grouting* dan diukur kembali defleksinya, diperlihatkan dalam Gambar 2-a-2.



Gambar 2-a-2. Diagram defleksi pada *Leave Edge* sebelum dan sesudah *grouting*. (AASHTO, 1993)

1.6.2.2.2. Metoda The Asphalt Institute, MS-17

The Asphalt Institute memberikan kriteria yang diberikan dalam Gambar 2-b-1, Tabel 1 dan Tabel 2. Bila defleksi sebelum *overlay* menunjukkan nilai lebih besar dari pada ketentuan dalam Tabel 1 dan rasio

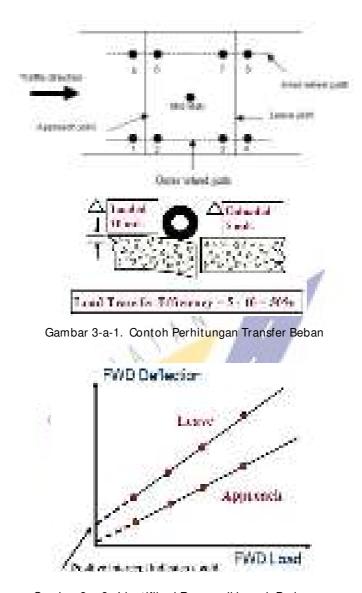
defleksi atau transfer beban D2/D1 dalam Tabel 2 kurang dari 0,6 merupakan indikasi bahwa panel tidak stabil, terjadi *pumping* dan kerusakan lainnya, maka tindakan korektif seperti *undersealing* slab harus dilakukan. D1 adalah lendutan pada tepi slab yang dibebani (*loaded*) dan D2 lendutan di bawah tepi slab yang tidak dibebani (*unloaded*). Ketentuan dalam Gambar 2-b-2, berlaku untuk perkerasan beton bertulangan menerus. Dalam Tabel 1 untuk beton bertulangan menerus dibatasi lendutan D3 maksimum adalah 0,44 mm dan bila lebih besar dari 0,44 mm maka tindakan korektif harus dilakukan. Berdasarkan batasan defleksi FWD pada Tabel 1 dan Tabel 2, maka dapat dihitung yaitu maksimum masingmasing d2 610 mikron dan d1 690 mikron.

Gambar 2-b-1. Perhitungan Transfer Beban (*The Asphalt Institute* M S-17)

Gambar 2-b-2. Defleksi Pada Perkerasan Bertulang Menerus (*The Asphalt Institute* M S-17)

Tabel 1. Kriteria Defleksi Maksimum (The Asphalt Institute M S-17)

No	Kriteria	Defleksi Maksimum (mm)			
	Miteria	B.Beam	FW D		
Α	Perkerasan Beton Bersambung				
	a. Perbedaan defleksi (D ₂ -D ₁)	0,05	0,08		
	b. Nilai tengah defleksi (D ₂ +D ₁)/2	0,36	0,57		
В	Perkerasan Beton Bertulang Menerus (D ₃)	0,27	0,44		


Tabel 2. Transfer Beban (The Asphalt Institute M S-17)

Rasio D ₂ /D ₁	Efisiensi Transfer Beban
> 0,75	Baik
0,6-0,75	Cukup
< 0,60	Buruk

1.6.2.2.3. The California Department of Transportation (Caltrans)

Bentuk lendutan maksimum perkerasan di tengah bentang panel dan tebalnya dapat digunakan untuk memperkirakan kekuatan lapisan. Tebal panel harus diukur secata tepat. Lendutan diukur di setiap tepi sambungan dan dihitung perban<mark>dingan</mark> besar defleksinya baik pada sambungan melintang atau memanjang. Contoh perhitungan Lynn Evans, Tom Pyle dan Walid Tabet (2005) dari The California Department of Transportation (Caltrans) digambarkan dalam Gambar 3-a-1. Lendutan maksimum dengan beban bervariasi pada sudut-sudut panel dan tepi dapat memperkirakan besarnya rongga di bawah perkerasan beton atau pondasi. Bila tepi panel tidak secara langsung didukung oleh tanah dasar pada saat belum dibebani, maka lendutan maksimum dengan besar beban yang lain berbeda pada lendutan tepi lainnya. Bila lendutan pada sambungan yang berpotongan dengan sumby Ylebih besar dari 0,05 mm (2 mils) maka merupakan indikasi bahwa di bawah panel terdapat rongga dan kurangnya daya dukung pondasi bawah atau tanah dasar (Lihat Gambar 3-a-2), sehingga tindakan korektif harus dilakukan

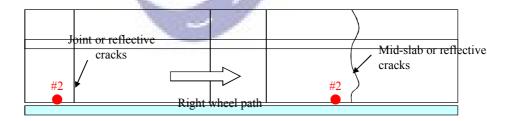
Metoda *Caltrans* bersumber dari AASHTO (1993) dalam menentukan LTE. LTE adalah baik bila dicapai nilai 100%.

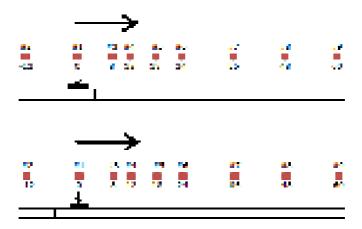
Gambar 3-a-2. Identifikasi Rongga di bawah Perkerasan

1.6.2.2.4. Metode Uji Defleksi dengan Alat FWD (*Testing Protocol*, *Underseal*)

Tommy Nantung (Maret, 2010) memberikan masukan tentang program penyelidikan perkerasan beton semen di jalan tol Kanci-Pejagan,

meliputi penempatan sensor alat FWD, jarak titik uji dan jumlah variasi beban dalam Gambar 3-b-1 dan Gambar 3-b-1.


a) Penempatan sensor:


Gambar 3-b-1. Penempatan Sensor

b) Jarak titik uji defleksi dan jumlah data (Test Spacing and Drops)

- Umum Setiap 100 meter, dengan 3 pembacaan masingmasing pada beban 7.000 lbs, 9.000 lbs, dan 11.000 lbs.
- Kerusakan parah (lebih dari 2 retakan melintang dalam 60 m) pembacaan diambil setiap 50 meter, dengan 3 pembacaan masing-masing pada beban 7.000 lbs, 9.000 lbs, dan 11.000 lbs.
- Lendutan tinggi (lebih besar dari 8 mils pada 9000lbs) pembacaan diambil setiap 50 meter, dengan 3 pembacaan masing-masing pada beban 7.000 lbs, 9.000 lbs, dan 11.000 lbs.
- Uji pada curling permukaan beton: diambil 3 pembacaan pada tepi dan tengah-tengah slab, dilakukan pada bagian yang tidak mengalami retak.

Gambar 3-b-2. Penempatan Sensor D2 pada Sensor Nomor 2.

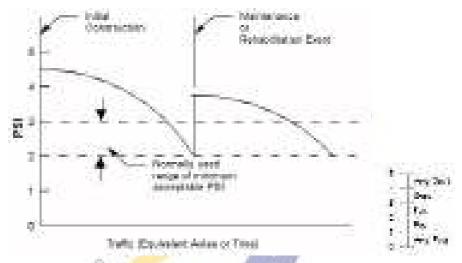


Gambar 3-b-3. Lokasi Titik Uji FWD (Leave and Approach Edge)

Berdasarkan Gambar 3-b-2 dan Gambar 3-b-3, posisi lalu lintas kendaraan di sebelah kanan, right wheel path ada di tepi luar lajur jalan, posisi sambungan berada di antara #1 dan #2. Beban dijatuhkan pada #1 dalam Gambar 3-b-3, di sebelah kanan sambungan atau garis retakan, dan akan mencatat lendutan di bawah #1 sebagai d1 (*leave edge*). Sensor #2 ada di sebelah kiri sambungan yang akan mencatat defleksi (d2) ketika beban dijatuhkan pada #1 sebagai defleksi d2 pada *approach edge*.

1.6.2.2.5. FHWA

FHWA memberikan metoda FWD dengan menempatkan loading plate dan sensor FWD seperti dalam Gambar 4-a. Besar *Load Transfer Effisiency* (LTE) pada joint yang dapat diterima untuk menjamin kekuatan ruji (*dowel*) harus lebih besar dari 60%.


Gambar 4-a. Diagram pengukuran defleksi dengan alat FWD pada JP

1.7. Parameter dan Interaksi Kondisi Ideal

1.7.1. Parameter Kinerja Fungsional

Untuk mengetahui kin<mark>erja perkerasan jalan beton semen sebagai</mark> perkerasan kaku dipe<mark>rlukan p</mark>arameter-parameter untuk mengukur interaksi kinerjanya selama periode monitoring dan analisis yang diperlukan. Kinerja suatu perkerasan dapat didefinisikan sebagai suatu penurunan kondis<mark>i s</mark>elama periode yang dianalisis akibat lalu lintas dan faktor lainnya. Kin<mark>er</mark>ja struktural perkerasan berhubungan dengan kondisi fisik misalnya retak, faulting, raveling dan kondisi lainnya yang akan mempengaruhi kemampuan struktur perkerasan terhadap lalu lintas atau untuk mempertahankan kondisi perlu pemeliharaan. Kinerja fungsional perkerasan terkait dengan baiknya pelayanan bagi pemakai jalan dalam konteks kenyamanan berkendara. Konsep pelayanan kinerja (serviceabilityperformance) dikembangkan oleh AASHTO Road Test, 1957 (AASHTO, Guide for Design of Pavement Structure, 1993) berdasarkan lima asumsi yang fundamental yaitu bahwa jalan raya adalah untuk transportasi yang nyaman, kenyamanan dinilai sebagai subyek oleh pengguna, pelayanan diekspresikan dalam suatu rentang, karakteristik perkerasan dapat diukur secara obyektif terhadap subyek yang dievaluasi, serta kinerja dapat diwujudkan dengan indeks pelayanan (present serviceability index, PSI, http://pavement interactive. org/index.php?title =PSI). PSI diperoleh dari pengukuran ketidakrataan (roughness) dan kerusakan seperti retak,

tambalan, faulting, dan kerusakan lainnya yang diamati (monitoring) selama masa pelayanan. Ketidakrataan adalah faktor yang dominan dalam memperkirakan PSI suatu perkerasan. Karena itu parameter ketidakrataan (roughness) merupakan suatu hal penting dalam mengamati trend penurunan kondisi perkerasan (history of pavements) dalam suatu periode yang dianalisis. Makin tinggi nilai PSI makin baik kinerja permukaan perkerasan jalan tersebut. Lihat Gambar 5-a.

Gamb<mark>ar 5-a. Konsep rating kinerja perkerasan jalan dengan Present Serviceability Index (PSI)</mark>

1.7.2. Parameter Kinerja Kekuatan Struktur

Parameter kinerja kekuatan struktur lainnya dapat diukur dengan mengetahui defleksi vertikal menggunakan alat Falling Deflectometer (FWD) atau alat lain yang sejenis. Defleksi antara tepi panel satu dengan lainnya dievaluasi berdasarkan kriteria tertentu. Pengujian dilakukan pula defleksi pada lokasi dua atau lebih retak transversal bila ada. Prosedur penentuan tebal perkerasan menggunakan nilai lendutan balik (Rebound Deflection) perkerasan jalan dengan batas tertentu. Bila defelksi yang ada sebelum overlay menunjukkan nilai lebih besar dari pada ketentuan, maka tindakan korektif seperti undersealing slab harus dilakukan sebelum pelapisan tambah, sesuai dengan pedoman dalam The Asphalt Institute, MS-17.

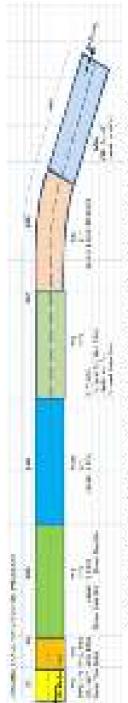
Parameter lainnya yaitu kuat tekan beton dengan menguji benda uji beton berbentuk silinder. Besar ekspansi horizontal memanjang segmen beton akibat faktor luar seperti temperatur dan efektifitas kinerja sambungan antar segmen beton. Besar curling permukaan beton diukur antara sudut segmen beton.

Campuran beton pada umumnya menggunakan agregat dengan ukuran nominal maksimum ¾". Untuk perkerasan jalan diperlukan kuat lentur yang relatif tinggi sehingga berdasarkan hasil uji laboratorium diperlukan agregat ukuran nominal maksimum 1½". Agregat dengan ukuran yang lebih besar akan menghasilkan tekstur permukaan yang lebih kasar dari pada agregat yang lebih kecil sehingga akan menghasilkan nilai kedalaman tekstur dan kekesatan yang berbeda.

1.8. State of the art Perkerasan Beton Pracetak-Prategang

Dalam Tabel 3 dan Tabel 4 disajikan kajian pustaka yang secara langsung atau tidak langsung dapat menunjang hasil kajian.

Tabel 3. Perkembangan Perkerasan Beton dan Beton Pracetak Luar Negeri.


di

In	stansi	Jenis
1.	Beton Pracetak-Prategang di Texas, USA	PPCP
	(David K, Merrit, Cs, 2000)	
2.	Jalan Beton Pracetak-Prategang di Indiana	PPCP
	(Luh M. Chang; Y. Chen; S.Lee, 2004)	
3.	Perkerasan Beton Prategang	Prestressed
	(AASHTO, 1993)	
4.	Perkerasan Beton Prategang	Cast in situ
	(American Concrete Institute, ACI 325.7R-88)	
5.	Perbaikan dengan Beton Pracetak pada Perkerasan Full-Depth	PCP
	(FHWA, 2007)	
6.	Pelapisan Tambah (Overlay Design) untuk Perkerasan Kaku (The	Rigid
	Asphalt Institute, MS-17	Pavement
7.	Efek Grooving Terhadap Risiko Hydroplaning (TRB 2006 Annual	Rigid
	Meeting).	Pavement

Tabel 4. Perkembangan Perkerasan Beton dan Beton Pracetak di Dalam Negeri

Instansi	Jenis
PT. Indocement Tunggal Prakarsa Tbk, 2006	PCP
Beton Pracetak-Pratekan di Cakung-Cilincing, Jakarta (Dit JBHJK, Ditjen Bina Marga, 2007)	PPCP
3. Perkerasan Beton Pracetak-Prategang di Kanci-Pejagan, Cirebon Jawa Barat (BPJT, 2008)	PPCP
4. Aplikasi dan Komposisi Beton Karet (Rustaman, 2008)	Cast in Situ
5. Pengaruh Tekstur Permukaan Perkerasan Beton Semen Terhadap Ban Kendaraan (Roestaman, S2, <i>Highway System Engineering</i>)	Perkerasan Kaku
Uji Coba Panel Beton Pracetak-Prategang Skala Laboratorium (A.Tatang Dachlan, 2008)	PPCP
7. Konsep Ujicoba skala penuh Perkerasan Jalan Beton Pracetak- Prategang di Buntu, Jawa Tengah. Lihat Lihat Tabel 5.	Pracetak-Prategang

Control to Strend (sport shale State State New Yorks dance Of Amodel Burt, May long?)

	100 TO 100	X 40	3			The Sander	
1322 3	4	2	Ĭ	8	1.7		
5 : 12 -	1000	į					
115x .						2 3 3 3	
1 :	17.4	3	3	3	Ž	3	
# 10 mm	Total Section 1	5 2 YEAR		7	- April 100	Contract the law or	N. Services
i ir :	8	2	2	8	ž,		
Pr.	я	8	2	n:	3		
in a gy a gy a	3	3	1	5	3	4	
A Condition A.	Manage September 184	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 174 An L	n special	とこ 子に	C. St. Schies 48, 2	
		ÿ,				1	

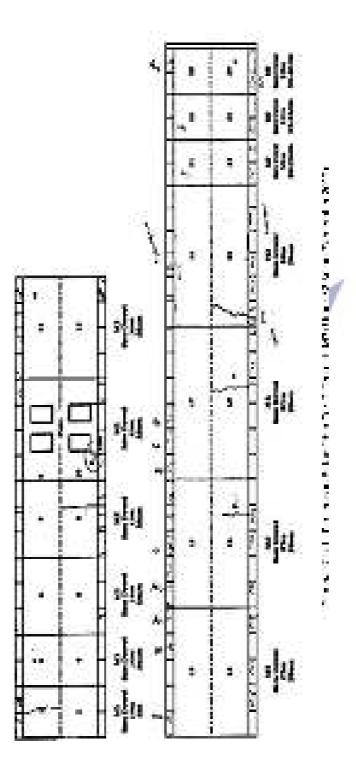
ANALISIS DATA DAN PEMBAHASAN UJICOBA SKALA PENUH, BUNTU-KEBUM EN, JAWA TENGAH

2.1. Data Lapangan

2.1.1. Kondisi Visual di Lokasi Ujicoba Skala Penuh, Buntu

1) Perkerasan Beton Pracetak Konvensional (M1)

Jenis perkerasan beton pracetak konvensional (M1) terjadi kerusakan retak setelah perkerasan berumur satu bulan dan retak bertambah di sekitar tempat yang sama pada umur lima bulan. Pada umur yang sama, slab nomor 10 terjadi retak sudut. Pada slab nomor 89, 90, 133, dan 134 terjadi retak setelah umur 5 bulan. Perkembangan kondisi diukur kembali pada umur 15 bulan. Dalam Gambar 7-a- 1 dan Gambar 7-a- 2 diperlihatkan kondisi setelah berumur 32 bulan.

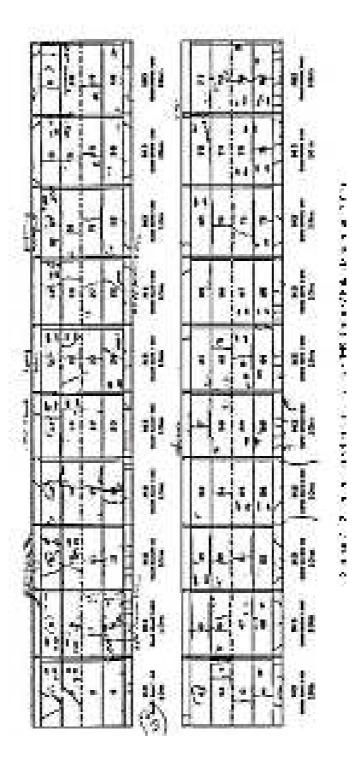

							0			
u		*	*>	z ja	1	E	*	×	87	2 1 A
ŧ			# 3	zj.	13000	8.4	8.4	E.	2	æ[4.
	9		*	#ļ:			e	F	5	z s
Ĭ.	7	-	×	e į z				٠	•	411
ä	Ħ	4	£	z is		*	,			uļs
٠	a	2	æ	zj.		*		*	*	215
n	ă		a	# i #		8	E	R		=ix i
Ç.	9	,	81	z įs		•	2	÷	'n	
1			4	z]z		ф:	34	þ		2 4
×.	4			× 4		*	14		7	×[×]

Gambar 7-a- 2 Foto Perkerasan Beton Pracetak Konvensional (M1) Umur 32 Bulan (September 2012)

2) Perkerasan Beton Fiber Polimer Sintetis (M2)

Pada jenis perkerasan beton fiber polimer sintetis (M2), kondisi pada umur satu bulan belum menunjukkan adanya kerusakan tetapi pada umur 5 bulan terjadi retak pada slab nomor 18 dan 20 untuk panjang slab masingmasing 25 meter dan 20 meter. Jarak retak masing-masing sekitar 18 meter dan 19 meter dari sambungan. Retak bertambah setelah umur 10 bulan masing-masing pada slab nomor 8 dan 16. Pada umur 32 bulan retak bertambah pada slab nomor 1. Lihat Gambar 7-b-1 dan Gambar 7-b-2.

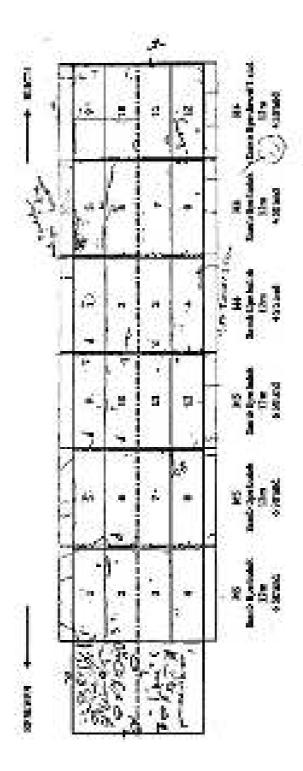
Pusat Penelitian dan Pengembangan Jalan dan Jembatan


Gambar 7-b-2. Foto Perkerasan Beton Fiber Cor Di Tempat (M2) Umur 32 Bulan (September 2012)

3) Perkerasan Beton Karet Pracetak (M 3)

Pada jenis perkerasan beton karet pracetak (M3) terjadi retak melintang selebar panel (1,8 meter) sebanyak 11 kejadian pada umur satu bulan dan berkembang menjadi 17 kejadian setelah berumur 5 bulan. Perlu dicatat bahwa pada awal pelaksanaan pemasangan panel M3 ini, retak selebar panel (1,8 meter) sebanyak 7 panel sudah terjadi yaitu pada panel-panel nomor 8, 9, 13, 17, 22, 23 dan 28. Retak terjadi karena satu panel (nomor 23) retak akibat penyimpanan di atas tumpuan pada bahu jalan yang tidak stabil. Panel lainnya terutama pada sisi lajur arah ke Buntu terjadi retak karena beban trailler yang mengangkut panel dengan total berat sekitar 50 ton melintas di atas panel yang belum di-stressing dan di-grouting. Kondisi permukaan diukur kembali pada umur 32 bulan seperti ditunjukkan dalam Gambar 7-c-1 dan Gambar 7-c-2.

Gambar 7-c-1. Foto Perkerasan Beton Karet Pracetak (M3) Umur 32 Bulan (September 2012)


Pusat Penelitian dan Pengembangan Jalan dan Jembatan

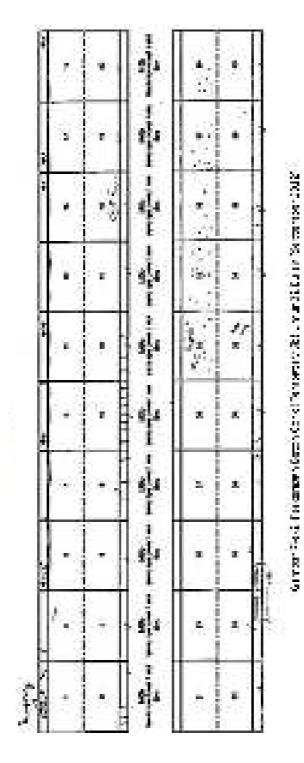
4) Perkerasan Beton Pracetak-Prategang, *Strand* 4 Buah dan Wire Mesh (M4)

Pada jenis perkerasan beton pracetak-prategang dengan strand 4 buah dan wire mesh (M4) terjadi retak sebanyak 2 panel yaitu panel nomor 9 dan nomor 10 akibat kejadian yang sama dengan tersebut pada panel M3. Kondisi tersebut tidak diperhitungkan sebagai kerusakan struktural akibat lalu lintas yang ada.. Retak sudut terjadi pada panel nomor 12. Kerusakan sambungan balok di muka panel nomor 1 dan nomor 2 pada umur satu bulan dan berkembang setelah berumur 5 bulan pada sambungan tersebut karena diketahui menggunakan mortar tahan susut untuk sambungan yang tidak sesuai dengan ketentuan mutu beton K-700. Retak seperti pada panel 9 dan nomor 10 tidak berkembang pada panel lainnya. Kondisi diukur pada umur 5 bulan, 10 bulan dan 32 bulan. Kondisi permukaan pada umur 32 bulan ditunjukkan dalam Gambar 7-d-1.

5) Perkerasan Beton Pracetak-Prategang dengan *Strand* 6 Buah Tanpa Wire Mesh (M 5)

Pada jenis perkerasan beton pracetak-prategang dengan strand 6 buah tanpa wire mesh (M5), terjadi retak sudut pada panel nomor 1, retak pada sambungan di muka panel nomor 2 dan nomor 7 pada umur satu bulan. Retak sudut berkembang pada panel nomor 1 menjadi 4 kejadian serta retak pada sambungan bertambah di muka panel nomor 6 dan nomor 3 karena mutu mortar tahan susut pada sambungan diketahui tidak sesuai, seperti terjadi pada M4. Kondisi diukur pada umur 5 bulan, 10 bulan dan 15 bulan. Pada umur 32 bulan kondisi permukaan ditunjukkan dalam Gambar 7-d-1 dan Gambar 7-d-2.

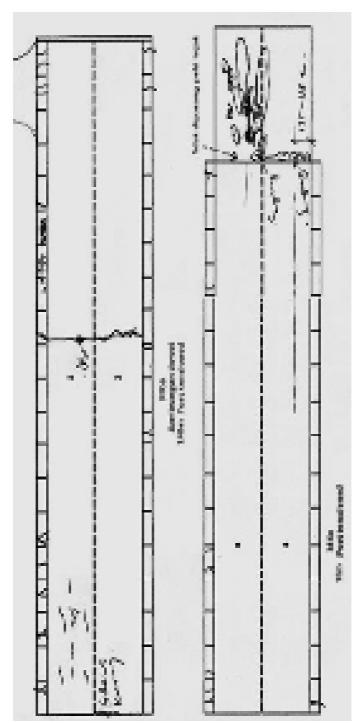
Company 2-4-1 Personal Deby Deposit Company Company (Company Company)


Gambar 7-d-2. Foto Perkerasan Beton Pracetak-Prategang (M4 dan M5) Umur 32 Bulan (Sept 2012)

6) Perkerasan Beton Fiber Polimer Sintetis Konvensional Cor Di Tempat (M 6b)

Pada jenis perkerasan beton konvensional cor di tempat (M6b), retak pada panel nomor 47, 89 dan nomor 49, retak susut pada panel nomor 66, dan lepas-lepas pada panel nomor 31 dan 33, pada umur 1 bulan. Setelah umur 5 bulan terjadi lepas-lepas pada panel nomor 35, 37, 39, 41 dan 43, yaitu pada lajur arah ke Buntu. Retak juga terjadi antara panel nomor 41 dan 42 serta panel antara panel nomor 47 dan 49. Sampai umur 32 bulan, kondisi permukaan ditunjukkan dalam Gambar 7-e-1 dan Gambar 7-e-2.

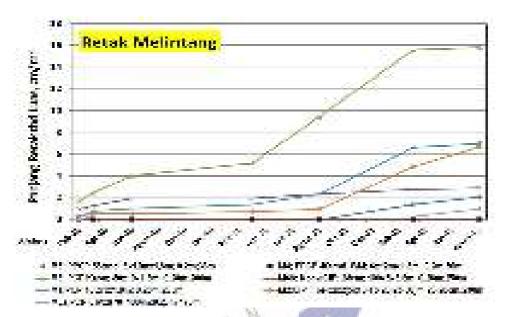
Gambar 7-e-1. Perkerasan Beton Cor di Tempat (M6b) Umur 32 Bulan (September 2012)


Pusat Penelitian dan Pengembangan Jalan dan Jembatan

a) Perkerasan Beton Konvensional Prategang Pasca-tarik (M 6a) Cor Di Tempat

Pada jenis perkerasan beton konvensional cor di tempat yang diprategang dengan sistem pasca tarik, panjang bentang masing-masing 100 meter dan 70 meter, terjadi retak pada umur satu bulan pada bentang 100 meter dengan jarak sekitar 60-65 meter yaitu pada segmen nomor 1, yang diperkirakan karena retak susut dan friksi yang relatif tinggi akibat permukaan dasar lapis perata yang kurang merata. Retak terjadi setelah umur 5 bulan pada segmen nomor 2, segaris dengan retak pada segmen nomor 1, yang terdapat pada lajur di sebelahnya. Retak tidak berkembang sampai umur 10 bulan. Retak bertambah pada umur 32 bulan pada segmen nomor 1, nomor 3 dan nomor 4, seperti ditunjukkan dalam Gambar 7-f-1 dan Gambar 7-f-2.

Gambar 7-f-1. Foto Perkerasan Beton Prategang Cor di Tempat (M6a) Umur 32 Bulan (September 2012)



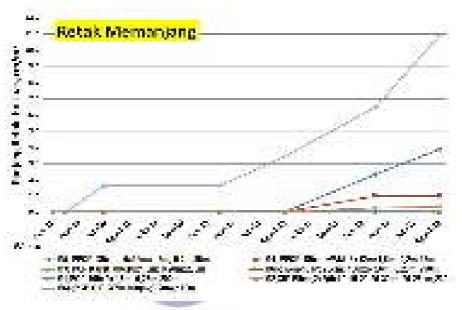
2000 20 ヒージ ともいいしょう どかつしもほうもの そうぎしゃながっちゃなもしい こうぎゅい

2.1.2. Perkembangan Kondisi Permukaan Perkerasan

1) Retak Melintang

Pada Gambar 7-g-1 menunjukkan retak melintang dominan terjadi pada beton karet (M3), disusul dengan kondisi retak lainnya dalam Gambar 7-g-3 sampai dengan Gambar 7-g-5. Perkembangan retak melintang terbanyak terdapat pada beton karet pracetak (M3) disusul dengan beton konvensional cor di tempat (M6b), beton pracetak konvensionil (M1) dan beton serat (M2). Setelah umur 17 bulan, beton pracetak konvensional (M1), beton fiber (M2), dan beton pracetakprategang (M5) menunjukkan perkembangan retak, tetapi beton konvensional menunjukkan perkembangan retak yang lambat. Walaupun retak terdapat pada beton tersebut, tetapi sampai umur 32 bulan tidak menunjukkan efek faulting karena diperkirakan masih ada ikatan antar agregat (aggregat interlock) yang memadai. Untuk mengurangi pemeliharaan retak yang efisien, tidak direkomendasikan perkerasan beton karet untuk perkerasan jalan dengan lalu lintas padat dan berat. Perbaikan dengan mengisi celah retak dilakukan menggunakan sealant tuang panas untuk menghindari intrusi air hujan ke dalam retakan. Lihat Gambar 7-g-2. Pemantauan ini perlu dilakukan saat secara rutin karena masih menunjukkan berkembang, terutama pada beton fiber (M2), dan agar setiap kejadian retak dapat segera dilakukan pengisian retak dengan bahan sealant.

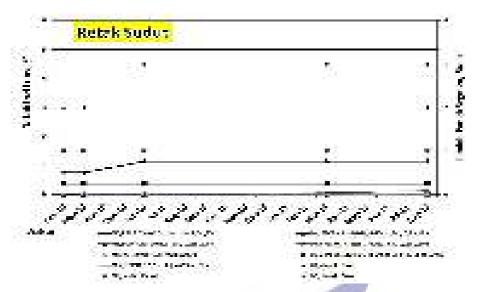
Gambar 7-g-1. Perkembangan Retak Melintang (Maret 2010 s/d September 2012)



Gambar 7-g-2. Foto Perbaikan Retak Melintang pada Beton Karet (M3) dengan Sealant Tuang Panas (September 2012)

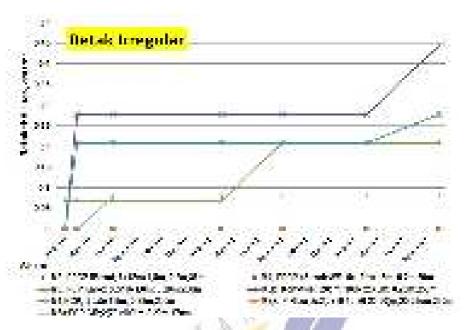
2) Retak memanjang

Retak memanjang ditemukan terbanyak pada beton pratageng cor di tempat (M6a), sampai umur 32 bulan mencapai 11 cm/m2. Hal ini diperkirakan karena tidak dilakukan prategang pada arah melintang. Retak memanjang lainnya ditemukan pada beton pracetak-pretagang (M5 dan M4) tetapi tidak seberapa besar sekitar (1–4) cm/m2. Lihat


Gambar 7-q-3. Untuk pemeliharaan saat ini. diperlukan dipertimbangkan dilakukan perbaikan dengan metode stiching sepanjang retakan setiap 30 cm menggunakan baja profil diameter 16 mm. Perbaikan dengan mengisi celah retak dilakukan menggunakan sealant tuang panas untuk menghindari intrusi air hujan ke dalam retakan. Pemantauan ini perlu dilakukan setiap saat secara rutin karena masih menunjukkan trend berkembang, terutama pada beton prategang cor di tempat (M6a), dan agar setiap kejadian retak memanjang baru dapat segera dilakukan stiching atau pengisian retak dengan bahan sealant.

Gambar 7-g-3. Perkembangan Retak Memanjang (Maret 2010 s/d September 2012)

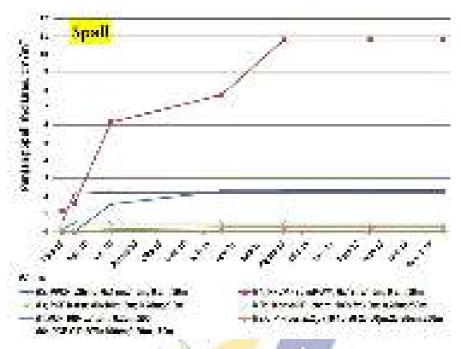
3) Retak Sudut


Perkembangan retak sudut ditemukan pada beton pracetak-prategang dengan 6 strand (M5) sekitar (0,4 - 1) % terhadap luas. Retak sudut pertama teridentifikasi pada saat beton berumur 5 bulan. Upaya perbaikan dilakukan sehingga retak sudut tidak berkembang. Lihat Gambar 7-g-4.

Gambar 7-g-4. Perkembangan Retak Sudut (Maret 2010 s/d September 2012)

4) Retak tidak beraturan (irregular)

Sampai umur 32 bulan, retak irregular terdapat pada beton konvensional cor di tempat (M6b), beton pracetak konvensional (M1), beton karet pracetak (M3) dan dan beton prategang cor di tempat (M6a) yang relatif kecil yaitu sekitar (0,2 - 0,45) cm/m². Perbaikan dengan mengisi celah retak dilakukan menggunakan sealant tuang panas untuk menghindari intrusi air hujan ke dalam retakan (Leksminingsih, 2008). LihatGambar 7-g-5. Pemantauan ini perlu dilakukan setiap saat secara rutin karena masih menunjukkan trend berkembang, terutama pada beton *pracetak konvensional* (M1) dan beton konvensional cor di tempat (M6b), dan agar setiap kejadian retak dapat segera dilakukan pengisian retak dengan bahan *sealant*.



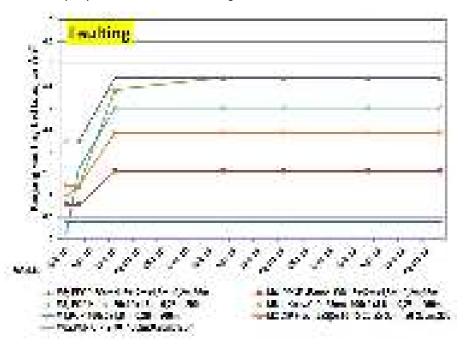
Gambar 7-g-5. Perkembangan Retak Irregular (Maret 2010 s/d September 2012)

5) Gompal atau pecah di tepi panel (Spall)

Kondisi gompal (*spall*) pada sambungan dalam Gambar 7-g-6 yang diakibatkan oleh antara lain, masuknya batu yang menyumbat ke dalam celah sambungan, sehingga akibat perubahan temperatur terjadi tekanan yang mengakibatkan bagian tepi panel pecah berbentuk gompal. Penyebab lainnya akibat beban kendaraan. Perbaikannya dengan memboingkar fragmen yang pecah, dibersihkan dengan kompresor udara, kemudian ditutup dengan beton segar atau campuran beraspal. Lihat Gambar 7-g-7.

Kerusakan spall ditemukan terbanyak pada beton pracetak-prategang (M4dan M5), sekitar 11 cm/m², *spall* pada bahu beton yang berbatasan dengan beton semen cor di tempat (disusul M6b), dan *spall* pada bahu beton yang berbatasan dengan beton pracetak-prategang (M5) sekitar 2 cm/m². Perkembangan *spall* berhenti pada umur 17 bulan.

Gambar 7-g-6. Perkembangan Spalling (Maret 2010 s/d September 2012)


Gambar 7-g-7. Foto kerusakan gompal (*spalling*) pada sambungan dan perbaikannya

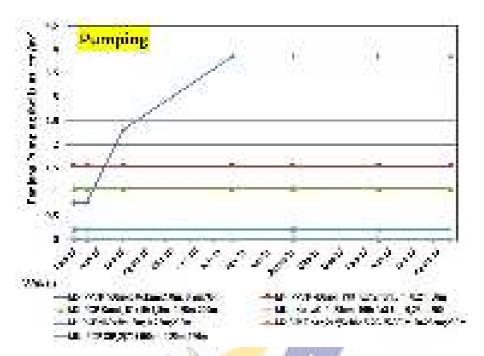
6) Faulting

Perkembangan faulting terbanyak ditemukan pada beton karet pracetak (M3) dan beton konvensional cor di tempat (M6b), disusul

dengan beton pracetak konvensional (M1), beton fiber (M2) dan beton pracetak-prategang (M4).

Kondisi beda tinggi pada sambungan atau retak (faulting) pada umumnya terdapat di antara bahu beton dan panel atau segmen beton, bahu beton lebih tinggi sekitar (4.0-8.0) mm dari pada panel beton, yang dapat diidentifikasi karena sejak pelaksanaan tidak dilakukan pemapasan bahu beton yang sudah dicor. Faulting terdapat pada sambungan beton karet pracetak dan sambungan panel beton konvensional yang relatif lebih banyak. Lihat Gambar 7-g-8. Kondisi tersebut diperbaiki dengan menambal menggunakan campuran beraspal panas. Lihat Gambar 7-g-9.

Gambar 7-g-8. Perkembangan Faulting (Maret 2010 s/d September 2012)



Gambar 7-g-9. Foto kerusakan f*aulting* pada sambungan dan perbaikannya dengan campuran beraspal panas

7) Pumping

Pumping banyak terdapat pada sambungan panel beton pracetak-prategang (M5 dan M4) sekitar 4 cm/m2, dan beton karet pracetak (M3) sekitar 1 cm/m2, serta antara bahu dan panel pracetak tetapi relatif sedikit. Kondisi pumping relatif berhenti pada umur sekitar 16 bulan (Agustus 2011) seperti terlihat pada Gambar 7-g-10. Pumping yang terjadi antara bahu jalan beton dan beton pracetak diperbaiki dengan grouting secara manual. Di beberapa bagian kondisi pumping dapat diatasi dengan grouting tersebut. Lihat Gambar 7-g-11. Pekerjaan grouting dilakukan beberapa kali karena ternyata dalam waktu sekitar 6 bulan muncul lagi pumping di tempat yang sama.

Pumping terdidentifikasi pula pada M4 dan M3. Retak sudut tidak terjadi pada jenis lainnya. Pumping mungkin akan muncul kembali di tempat yang sama. Perlu dipertimbangkan untuk memonitor setiap saat kemungkinan gejala pumping baru atau pumping di tempat lama yang dapat terjadi.

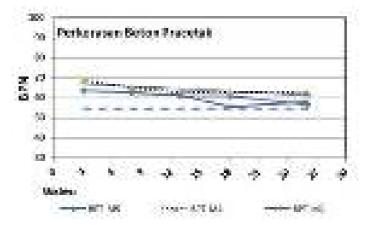
Gambar 7-g-10. Perkembangan *Pumping* (Maret 2010 s/d September 2012)

Gambar 7-g-11 Foto kegiatan pekerjaan *grouting* pada bagian yang mengalami *pumping*

2.1.3. Kedalaman Tekstur

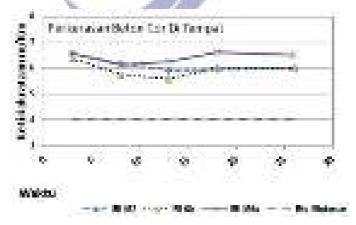
Dalam Gambar 8-a dan Gambar 8-b, disajikan hasil uji kedalaman tekstur permukaan dengan metoda lingkaran pasir atau Sand Patch. Dalam Gambar 8-a adalah kedalaman tekstur yang terdapat pada perkerasan beton semen cor di tempat yang mengalami penurunan kedalaman setelah umur antara 8 bulan dan 18 bulan. Sedang dalam Gambar 8-b menunjukkan seluruh jenis beton pracetak-prategang memiliki kedalaman tekstur yang rata-rata di bawah standar (< 0,6 mm). Pola tekstur yang baik adalah dengan alat *tining* yang terbuat dari logam untuk membuat alur melintang di permukaan beton plastis dengan kedalaman 4 mm (3/16 in.), lebar alur tekstur 2 mm (1/12 in.), dan spasi rata-rata 25 mm (1 inci). Jarak tining memiliki banyak hubungan dengan tingkat kebisingan. Kedalaman alur minimum adalah 2 mm (1/8 in.).

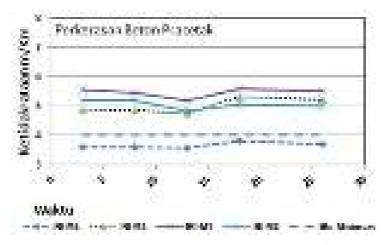
Gambar 8-a Kedalaman Tekstur Permukaan Perkerasan Beton *Cast In Place* (CIP), Umur 27 Bulan


Gambar 8-b. Kedalaman Tekstur Beton Pracetak Umur 27 Bulan

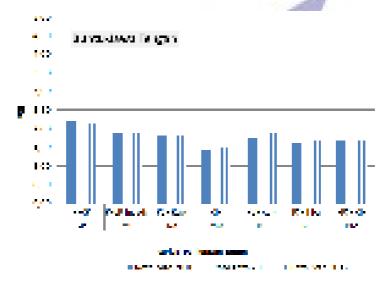
2.1.4. Kekesatan dengan alat British Pendulum Tester (BPT)

Dalam Gambar 9-a dan Gambar 9-b, disajikan hasil uji kelicinan permukaan menggunakan alat *British Pendulum Tester* (BPT). Kedua jenis beton semen memiliki kekesatan yang rata-rata lebih baik yaitu > 55 BPN (*British Pendulum Number* (BPN). Pada beton semen pracetak mengalami penurunan kekesatan secara lambat.


Gambar 9-a. Kekesataan Permukaan beton *Cast In Place* (CIP), umur 27 Bulan


Gambar 9-b. Kekesataan Permukaan Beton Pracetak, Umur 27 Bulan

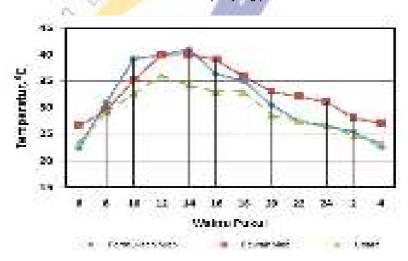
2.1.5. Kerataan Permukaan dengan alat Walking Profiler (WP) dan Analisis PSI


Dalam Gambar 10-a dan Gambar 10-b, disajikan hasil uji kerataan permukaan menggunakan alat *Walking Profiler* (WP). Analisis kinerja perkerasan dengan PSI ditunjukkan dalam Gambar 10-c. KInerja perkerasan relative meningkat walaupun tidak signifikan. Hal ini karena dilakukan perbaikan pada sambungan dengan grinding untuk memperkecil adanya *faulting*. Untuk memperoleh permukaan yang ideal untuk mencapai nilai 5 diperlukan alat *grinding* intan, yang sampai saat ini alat tersebut belum ada di Indonesia.

Gambar 10-a Kerataan Permukaan Beton Cast In Place (CIP), Umur 27 Bulan

Gambar 10-b. Kerataan Permukaan Beton Pracetak Umur 27 Bulan

Gambar 10-c. Kinerja Perkerasan, Tahun 2010 s/d 2012


2.1.6. Gradien Temperatur Beton dan Muai Susut Slab Pada Sambungan

Dalam Gambar 11-a ditunjukkan fluktuasi temperatur perkerasan pada permukaan slab, bawah slab dan temperatur udara. Temperatur tetinggi dan terrendah di Buntu, temperatur permukaan terjadi antara 22 0C dan 42 0C, di

bawah slab antara 26 0C dan 40 0C, udara antara 24 0C dan 36 0C. Gradien temperatur permukaan dan di bawah slab bervariasi antara siang dan malam. Pada siang hari antara 0 0C dan 5 0C, dan malam hari antara 1 0C dan 5 0C. Pada petang dan malam hari, temperatur bawah relatif lebih tinggi daripada di permukaan.

Berdasarkan hasil perhitungan pemuaian panel dengan panjang 100 m, diperoleh nilai kontraksi sebesar 8,4 mm, dan perubahan panjang musiman sebesar 14 mm. Temperatur permukaan slab relatif lebih tinggi antara jam 7 pagi sampai jam 2 petang, kemudian menurun di bawah temperatur bawah slab selama dini hari sampai menjelang pagi hari. Berdasarkan perhitungan yang disarankan oleh ACI 325-7R-88, diperoleh jarak sambungan muai yang aman sebesar 14 mm untuk panjang panel 100 meter seperti ditunjukkan perhitungannya dalam Tabel 5. Berdasarkan hasil perhitungan pemuaian panel dengan panjang 100 m, diperoleh nilai kontraksi sebesar 8,4 mm, dan perubahan panjang musiman sebesar 14 mm

Hasil pengukuran muai-susut pada sambungan yang dilakukan secara manual di lapangan (Lihat Gambar 11-b), setiap dua jam selama 24 jam dalam satu hari dan selama 7 hari dalam satu minggu menghasilkan perubahan nilai muai susut antara 3 mm dan 5 mm untuk panjang panel 5 m dan 30 m.

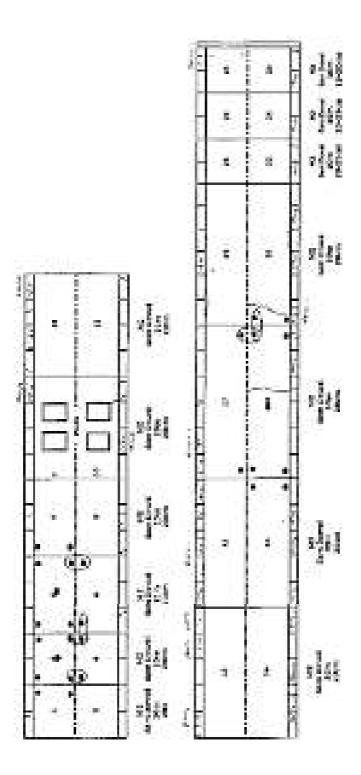
Gambar 11-a. Fluktuasi Temperatur Perkerasan dan Udara di Lokasi Ujicoba Skala Penuh, Buntu-Kebumen, Jawa Tengah

Gambar 11-b. Foto pengukuran perubahan muaisusut terhadap temperatur

Tabel 6. Perhitungan Besar Pemuaian Panel Panjang 100 m di Buntu (ACI 325-7R-88)

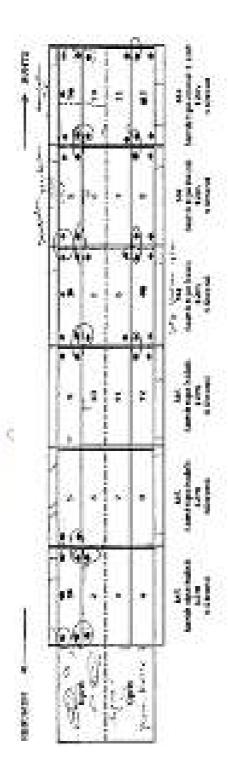
Pa	rameter	Symbol	Formula	Satuan	Hasil Perhitunga
Te	bal Slab = 20 cm = 8 inci	t		in	8
Pa	njang Slab = 100 m = 328,1 ft	F 1/2		ft	328,1
Ве	rat volume Beton : 2400 kg/m3	G	- MAN -	lb/ft³	149,6
Мс	odulus elastis beton	Ec	ALCOHOL:	psi	3925499 4.353.589
Te	mp. regangan muai, > 27 °C (8 <mark>0 °F)</mark>	T _{LCh-t}		°F	80
	Temp permukaan Maks. <mark>rata-rat</mark> a	T _{CS-Max}	ALCOHOL:	٥F	115
	Koefisien Termal musim panas	e -Sum	MM.	in/⁰F	0,000006
	Koef Friksi	f>80			0,5
	Gradient temp musim panas	T _{G-Sum}		°F/in	4
1	Temperatur rata-rata > 80 °F	Tav>80 F	Tcs-Max - (e-sum x T _{G-Sum})/2	٥F	98,8
2	Muai (unrestrained)	Ex _{UR-Sum}	(T _{av>80 F} -T _{LCh-t}) x e _{-Sum} x (L x 12)	in	0,44
3	Tegangan friksi, tengah bentang	SMid	(f>80 x L/2 x 1 x t/2 x G)/(12 x t)	psi	63,91
4	Muai akibat Tegangan di tepi	Ex _{R-Edge}	$\{(S_{Mid}/2) - (L x 12/2)\}/E_c$	in	0,01
5	Muai penuh	Ex _{R-Full-Sum}	- Ex _{UR-Sum} - (2 x Ex _{R-Edge})	in	0,42
			- LXUR-Sum - (Z X LXR-Edge)	mm	10,5
Те	mperatur kontraksi	T _{LCh-i}		٥F	71,6
	Temp permukaan Min. Rata-rata	T _{CS-Min}		٥F	68
	Koefisien Termal	e _{-Win}		in/ºF	0,000006
	Koef Friksi	f _{<20}			0,5
	Gradient temp	$T_{G ext{-Win}}$		°F/in	4
6	Temperatur rata-rata	T _{av<20 F}	T _{CS-Min} - (e _{-Win} x T _{G-Win})/2	٥F	84
7	Kontraksi (unrestrained)	Ex _{UR-Win}	$(T_{av < 20} - T_{LCh-i}) xe_{-Win} x (L x 12)$	in	0,29
8	Tegangan friksi, tengah bentang	S_{Mid}	$(f_{<20} \times L/2 \times 1 \times t/2 \times G)/(12 \times t)$	psi	85,21

Par	ameter	Symbol	Formula	Satuan	Hasil Perhitunga
9	Kontraksi akibat Tegangan di tepi	Ex _{R-Edge}	{(S _{Mid} /2) - (L x 12/2)}/E _c	in	0,019
10	Kontraksi penuh	Ex _{R-Full-Win}	Ev. (0 v Ev.)	in	0,331
			Ex _{UR-Win} - (2 x Ex _{R-Edge})	mm	8,4
Per	ubahan panjang <i>Unrestrained</i> musi	man untuk +20) s/d +80F (-7 s/d +27 °C)		
	Koefisien Termal Rata-rata	e _{Avg}		in/⁰F	0,000006
	Perubahan panjang ak kelembaban pada Sum-Win	ibat eex-Moist		in/in	0,0001
11	Muai antara	Ex _{UR-Avg}	(T _{LCh-t} - T _{LCh-i}) x e _{Avg} x (L x 12)	in	0,20
12	3	ibat Ex _{Moist}	e _{Ex-Moist} x L x 12	in	<u>-0,39</u>
13	Penyesuaian panjang	L _{adj}	EXUR-Avg - EXMoist	in	-0,20
14	Muai antara 80 °F &130 °F	Ex _{R-Full-}	Dari 5	in	0,42
15	Kontraksi antara -20 °F & +20°F	Ex _{R-Full-}	Dari 10	in	0,33
16	Total perubahan panjang Tahunan	Ex _{Tot-An}	- Ladi + EXUR-Sum + EXR-Full-Win	in	0,55
			— LAdj + ⊏XUR-Sum + ⊏XR-Full-Win	mm	14,0

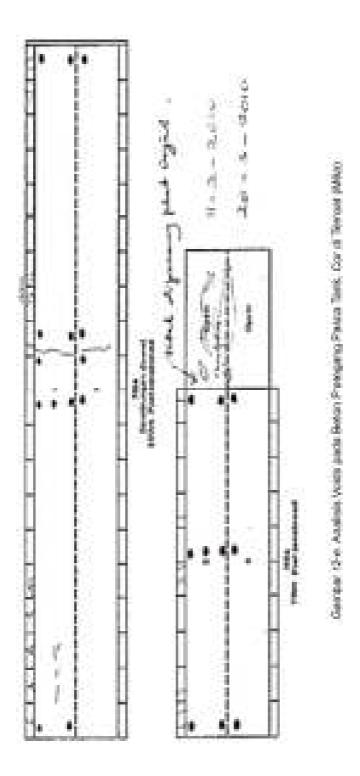

2.1.7. Pengukuran Defleksi Vertikal dengan Falling Weight Deflectometer (FWD)

Berdasarkan penilaian kondisi permukaan, sambungan panel-panel ditandai terutama yang diperkirakan terjadi pumping. Dari data hasil uji dengan FWD yang diukur pada umur 5 bulan terlihat rongga di bawah panel (dalam lingkaran) yang memerlukan penanganan grouting.

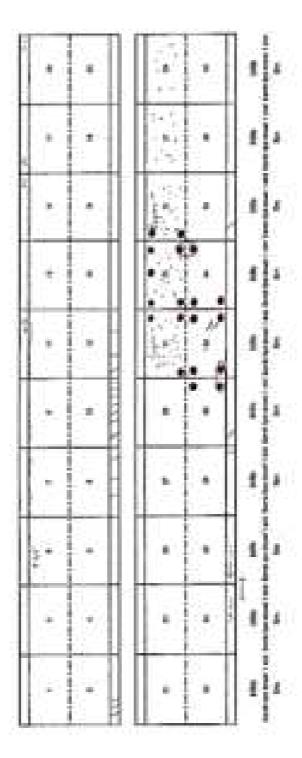
Dalam Gambar 12-d sampai dengan Gambar 12-f, terlihat bagian-bagian yang terdapat rongga di bawah panel, dan terdapat indikasi *voids* di bawah Panel, kecuali pada perkerasan beton prategang pasca tarik (M6a) dalam Gambar 12-e tidak ditemukan indikasi *voids. Voids* ditemukan paling banyak di bawah perkerasan beton pracetak-prategang (M4 dan M5) dalam Gambar 12-d serta beton pracetak karet (M3), beton pracetak konvensional (M1) dan beton fiber sintetis (M2), masing-masing diperlihatkan dalam Gambar 12-a, Gambar 12-b dan Gambar 12-c.


							ŀ	•	4	1	1	1	1		1			1	
	ı		1	ı	ŀ	1	ŀ		ala	1	1	1	1		Ŀ	i	I	2	4
		×	i					*	di.	1	1		1		1	i	1	1	4
		T.					,	H	ф.	1	i	i.	1		1	u i	ì	t	4
		K			Ī			ŧ.	de	ī		1	ì			τ	,	1	中
÷					ŀ	1			4			*	ŧ		1		i	1	+
	+	*				ř			ψ,							7	1	1	ф
j		1							抻		1		1		1		ī	1	÷
		H					,	,	#	i	ī	٠			ı		4	1	d
					Ī		ī		12					H	1		i		ф

Gambor 12-a. Arakini Varia ceda Batoo Karwensonii Pracaba (Atti)



Charles a Service and Control Service and Control and Control Service (Alberta


Beton, Perkerasan Beton, Pracetak, Prategang, Acuan tetap, Acuan bergerak

Carrier 1200 Phase Other seco Panishbake Productivities at 174 cm HS.

Beton, Perkerasan Beton, Pracetak, Prategang, Acuan tetap, Acuan bergerak

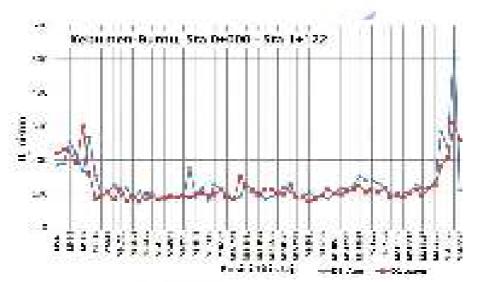
Guerter 12-1 Austrial-Volds parts Boton Horvemisma Cor of Tempal (MR);

2.1.8. Analisis Rongga di Bawah Sambungan

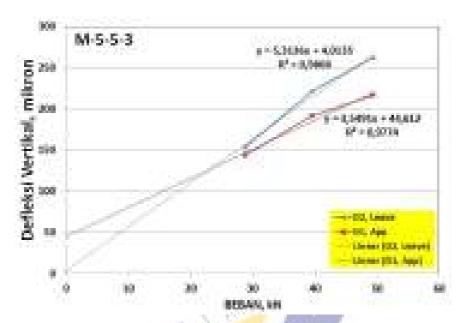
Dalam Gambar 12-g dan Gambar 12-h ditunjukkan profil lendutan yang diukur setelah dilakukan *grouting* dan setelah perkerasan beton berumur 15 Bulan. Data lendutan diperoleh pada titik sepanjang jalur jejak roda luar, baik ke arah Buntu maupun ke arah Kebumen. Dalam Tabel 6 dan Tabel 7 ditunjukkan lokasi titik uji dan nilai lendutan serta *Load Transfer Effisiency* (LTE), dan karekteristik lendutan perkerasan lainnya termasuk selisih defleksi vertikal, mean defleksi dan analisis indikasi *voids* yang terjadi pada sambungan.

1) Kebumen-Buntu

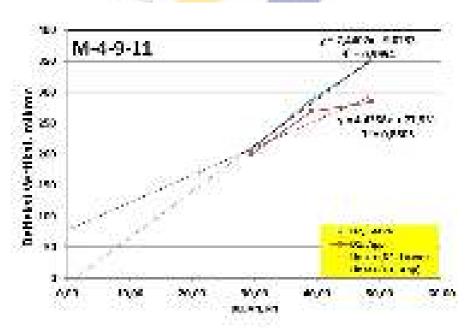
Berdasarkan analisis dalam Tabel 6 menunjukkan bahwa seluruh sambungan kuat menerima beban, ditunjukkan dengan nilai efisiensi transfer beban, LTE > 0,6. Selisih defleksi lebih besar dari pada 80 mikron hanya terjadi di satu sambungan pada jenis beton karet M4-1-7 dan beton prategang cor di tempat M6a-1-127, masing-masing menunjukkan terindikasi void. Dari 130 titik uji, maka yang mengalami selisih defleksi lebih besar dari 80 mikron sekitar 0,8% dan yang terindikasi void sekitar 1,5%.

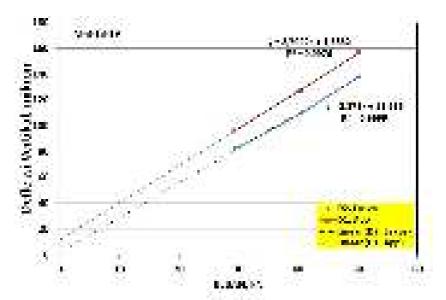

Tabel 7. Data Lendutan (mikron) arah Kebumen-Buntu

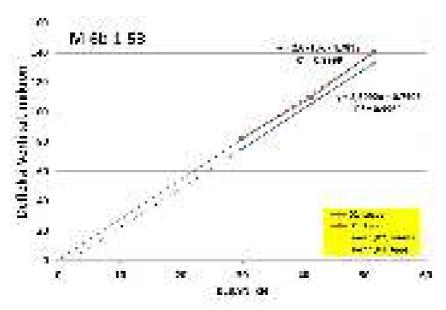
Sta.	Simbol	D1, App	D2, Leave	D3	D4	D5	D6	D7	D8	D9	LTE = < d ₂ / d ₁ Maks 0,6;	(d1-d2) < 80 mm;	[(D ₂ +D ₁)/2] <570;	Indksi Voids
0	M5-1-1	186,30	213,50	181,60	156,80	137,80	104,70	80,60	63,20	50,40	;OK;	OK;	OK;	OK
0,011	M5-1-2	219,10	227,40	186,50	157,20	137,60	109,70	94,30	77,80	60,60	;OK;	OK;	OK;	OK
0,012	M5-5-3	191,20	221,20	182,90	156,30	135,10	109,00	85,10	73,70	57,90	;OK;	OK;	OK;	OK
0,023	M5-5-4	230,00	296,60	230,50	196,40	173,90	134,40	100,6	77,70	59,80	;OK;	OK;	OK;	OK
0,024	M5-9-5	255,30	238,10	210,70	183,70	164,90	124,20	95,10	70,90	52,80	;OK;	OK;	OK;	OK
0,035	M5-9-6	224,90	291,30	209,30	167,40	149,60	121,20	96,80	71,30	54,40	;OK;	OK;	OK;	OK
0,036	M4-1-7	216,90	208,20	188,00	165,10	147,70	119,10	90,60	67,50	48,90	;OK;	OK;	OK;	OK
0,047	M4-1-8	193,50	275,90	194,50	140,40	125,50	99,70	77,50	59,60	46,40	;OK;	82	OK;	56
0,049	M4-5-9	166,70	200,40	174,00	161,00	147,40	121,50	97,00	77,60	62,00	;OK;	OK;	OK;	OK
0,059	M4-5-10	301,60	317,70	233,30	189,40	168,70	132,70	97,40	72,20	53,60	;OK;	OK;	OK;	OK
0,06	M4-9-11	268,90	287,10	233,60	198,00	169,40	124,80	89,80	64,60	47,60	;OK;	OK;	OK;	OK
0,071	M4-9-12	160,40	180,20	158,20	144,90	134,20	112,20	93,80	72,40	55,20	;OK;	OK;	OK;	OK
0,072	M3-1-13	153,30	147,20	135,70	126,80	114,50	96,50	74,90	59,40	43,70	;OK;	OK;	OK;	OK
0,081	M3-1-14	85,70	88,20	85,40	84,10	79,40	67,90	57,10	50,10	40,90	;OK;	OK;	OK;	OK
0,082	M3-5-15	98,20	102,80	91,80	86,60	81,10	69,90	55,10	43,40	36,60	;OK;	OK;	OK;	OK
0,091	M3-5-16	90,00	92,10	87,90	87,40	83,70	76,20	67,10	52,10	43,90	;OK;	OK;	OK;	OK
0,092	M3-9-17	101,90	104,40	101,00	92,40	87,40	75,90	59,60	50,50	40,50	;OK;	OK;	OK;	OK
0,101	M3-9-18	106,00	125,30	122,00	87,90	79,90	68,80	58,20	48,50	41,80	;OK;	OK;	OK;	OK
0,102	M3-13-19	127,60	109,20	105,80	94,00	84,60	72,20	58,10	50,10	40,30	;OK;	OK;	OK;	OK

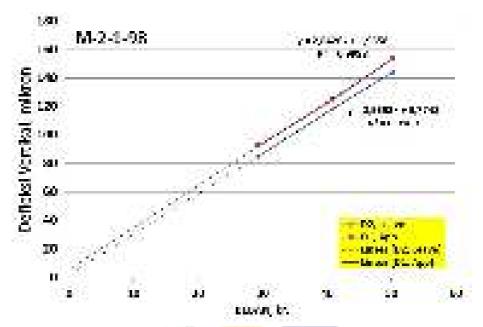

Sta.	Simbol	D1, App	D2, Leave	D3	D4	D5	D6	D7	D8	D9	LTE = < d ₂ / d ₁ Maks 0,6;	(d1-d2) < 80 mm;	[(D ₂ +D ₁)/2] <570;	Indksi Voids
0.444	140 40 00	20.00	00.70	20.00	05.00	04.00	22.22	50.00	45.50	00.00				01/
0,111	M3-13-20	83,20	89,70	86,20	85,00	81,00	68,30	58,00	45,50 46.20	38,20	;OK; ;OK;	OK;	OK;	OK
0,112	M3-17-21	95,00 113,80	99,80	88,10 125,00	81,70	75,70	64,50	55,40	-, -	40,20		OK;	OK; OK;	OK
0,122	M3-17-22 M3-21-23	117,70	144,80 109,80	100,20	101,50 90,80	91,60 84,40	76,60 71,40	64,00 59,70	51,60 47,20	42,30 39,10	;OK; ;OK;	OK; OK;	OK;	OK OK
0,122	M3-21-24	79.30	85,50	84.70	80,60	74,60	62,60	52,80	43,90	36.00	;OK;	OK:	OK:	OK
0,132	M3-25-25	85,70	86,50	80.30	73,90	68,60	60,80	50.70	44,40	36,20	;OK;	OK;	OK;	OK
0,133	M3-25-26	97,00	97,20	96,40	93,60	82,50	75,70	59,50	48,70	39,70	;OK;	OK;	OK;	OK
0,142	M3-29-27	107,60	106,50	97.00	89,30	81,90	67,90	54,80	45,70	39,10	;OK;	OK;	OK:	OK
0,142	M3-29-28	75,70	76,50	74,30	71,80	67,80	58,10	50,10	42,80	36,80	;OK;	OK;	OK;	OK
0,152	M3-33-29	81,50	77,30	73,10	68,70	64,50	55.20	47,60	41,80	32,60	;OK;	OK;	OK:	OK
0,162	M3-33-30	98,70	115,00		103,70	93,50	75,50	61,10	52,60	41,90	;OK;	OK;	OK;	OK
0,162	M3-37-31	104,60	97,00	92,90	83,70	76,60	66,50	54,70	46,80	39,40	;OK;	OK;	OK;	OK
0,172	M3-37-32	87,60	88,50	87,00	89,00	79,50	63,20	53,00	45,00	38,60	;OK;	OK;	OK;	OK
0.173	M3-41-33	83,70	82,90	75.40	72,00	67,30	57,90	48,50	43,60	37,60	;OK;	OK;	OK;	OK
0,182	M3-41-34	81,90	82,50	80,10	78,60	70,20	60,90	52,30	45,10	38,80	;OK;	OK;	OK;	OK
0,183	M3-45-35	82,90	79,50	74.50	69,80	65,80	58,60	50,10	44.00	36,30	;OK;	OK;	OK;	OK
0,192	M3-45-36	87,80	86,80	85,20	83,20	75,10	64,20	56,50	48,80	41,10	;OK;	OK;	OK;	OK
0,193	M3-49-37	98,70	93.10	86,40	79,50	73,10	68.00	55,80	48,90	41,80	;OK;	OK:	OK:	OK
0.202	M3-49-38	88,50	88,90	85.30	83,60	83,50	69,60	60,40	50,80	43,20	;OK;	OK;	OK;	OK
0,203	M3-53-39	88,40	81,90	77,00	73,50	70,10	62,00	58,00	45.50	39,50	;OK;	OK;	OK;	OK
0.212	M3-53-40	89,50	95,00	91.50	92,40	74,10	64,00	56,30	47,80	40,90	;OK;	OK;	OK;	OK
0,213	M3-57-41	91,00	87,00	79,60	73,50	67,80	57,10	51,00	37,80	31,00	;OK;	OK;	OK;	OK
0,222	M3-57-42	95,80	103,30	99.90		73,50	65,70	55,70	49,20	41.70	;OK;	OK;	OK:	OK
0,223	M3-61-43	175,40	165,80	151,80	137,10	126,20	104,60	88,10	70,70	57,60	;OK;	OK;	OK;	OK
0,232	M3-61-44	86,70	84,50	84,40	86,40	80,50	65,20	53,40	47,00	39,00	;OK;	OK;	OK;	OK
0,233	M3-65-45	91,20	85,10	78,30	75,20	67,00	55,10	60,10	46,30	38,80	;OK;	OK;	OK;	OK
0,242	M3-65-46	98,90	105,70	104,00	98,40	89,90	72,50	58,50	48,00	39,00	;OK;	OK;	OK;	OK
0,243	M3-69-47	117,40	110,90	103,40	96,40	89,40	77,10	66,50	56,20	47,50	;OK;	OK;	OK;	OK
0,252	M3-69-48	99,00	107,60	104,30	77,70	72,30	64,60	47,40	46,70	38,80	;OK;	OK;	OK;	OK
0,254	M3-73-49	78,70	81,00	73,60	70,10	66,70	59,90	50,60	41,10	34,90	;OK;	OK;	OK;	OK
0,262	M3-73-50	93,70	96,50	96,70	83,90	78,40	67,60	53,40	44,60	37,30	;OK;	OK;	OK;	OK
0,263	M3-77-51	127,70	111,90	104,40	94,00	86,00	71,90	64,50	47,40	39,10	;OK;	OK;	OK;	OK
0,272	M3-77-52	97,30	101,30		101,10	73,00	62,80	53,20	45,20	38,10	;OK;	OK;	OK;	OK
0,273	M6B-1-53	109,80	105,50	100,50	91,20		70,40	59,90	48,00	40,00	;OK;	OK;	OK;	OK
0,294	M6B-7-54	113,80	107,20	99,50	88,90	82,20	67,60	49,80	44,20	37,10	;OK;	OK;	OK;	OK
0,294	M6B-8-55	98,60	91,80	85,20	78,70	73,60	62,90	52,10	43,70	37,00	;OK;	OK;	OK;	OK
0,314	M6B-15-56	91,30	93,10	89,20	82,80	75,90	63,10	53,50	47,10	40,10	;OK;	OK;	OK;	OK
- ,	M6B-17-57	85,40	80,70	77,40	72,70	69,80	56,20	52,20	46,80	38,80	;OK;	OK;	OK;	OK
	M6B-23-58	83,00	82,70	78,50	71,50	66,90	59,80	51,30	43,80	38,20	;OK;	OK;	OK;	OK
	M6B-25-59	90,40	80,30	78,00	75,60	72,70	72,60	57,50	50,00	43,00	;OK;	OK;	OK;	OK
	M6B-31-60	149,70	98,40	94,50	86,10	76,90	70,50	59,00	50,40	43,40	;OK;	OK;	OK;	OK
	M6B-33-61	131,30	121,50	108,20							;OK;	OK;	OK;	OK
	M6B-39-62	124,30	98,00					-	50,00	-	;OK;	OK;	OK;	OK
	M6B-41-63	103,90	96,90			80,20		-	49,10	-	;OK;	OK;	OK;	OK
	M6B-47-64	112,60	117,20	103,70			70,70		45,90	39,50	;OK;	OK;	OK;	OK
	M6B-49-65	105,40	93,50		85,00		69,80			40,90	;OK;	OK;	OK;	OK
	M6B-55-66	95,50	96,60	,	79,70	,	63,70	53,20	47,60	39,40	;OK;	OK;	OK;	OK
	M6B-57-67	84,00	82,00		71,90			53,40		40,40	;OK;	OK;	OK;	OK
	M6B-63-68	112,80	87,80		70,70		62,70		-, -	, -	;OK;	OK;	OK;	OK
0,433	M6B-65-69	93,40	86,20	10,10	73,20	07,40	J9,9U	3∠,40	44,80	31,30	;OK;	OK;	OK;	OK

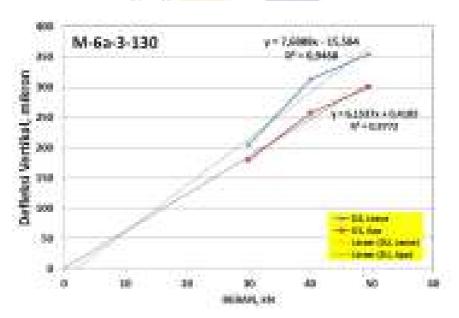
Sta.	Simbol	D1, App	D2, Leave	D3	D4	D5	D6	D7	D8	D9	LTE = < d ₂ / d ₁ Maks 0,6;	(d1-d2) < 80 mm;	[(D ₂ +D ₁)/2] <570;	Indksi Voids
0.450	MOD 74 70	110.70	05.00	00.50	04.00	77.00	00.00	40.00	45.40	00.40				01/
	M6B-71-70	113,70	95,00 93.70	90,50	81,20	77,00	62,60	48,90 54.20	45,40	38,10	;OK;	OK;	OK;	OK
0,454		97,80	, -	88,90	83,30	77,90	66,40	- , -	46,60	39,40	;OK;	OK;	OK;	OK
0,474	M6B-79-72 M6B-81-73	101,60 119,10	91,20 108,10	69,80 98,30	65,50 89,70	61,60 81,60	54,70 67,90	46,80 58,90	42,00 48,90	33,20 40,80	;OK; ;OK;	OK; OK;	OK; OK;	OK OK
0,473	M6B-87-74	98,10	80,20	74,40	70,80	66,30	58.30	51,90	45,20	39.00	;OK;	OK;	OK;	OK
	M6B-89-75	106,50		90,20	81,80	77,90	63,50	57,40	48,90	41,80	;OK;	OK;	OK;	OK
			97,80	64,40		57,70	64,60	45,60						OK
0,513	M6B-95-76 M6B-97-77	125,90 90,80	64,40 82,90	77,80	61,00 69,90	65,10	57,90	48.10	40,40 43,90	35,60 37,30	;OK; :OK:	OK; OK;	OK; OK;	OK
0,533	M1-5-78	87,50	89,30	86.00	80,10	78,10	67,50	56,20	48,40	39,90	;OK;	OK;	OK;	OK
0,534	M1-9-79	90,20	85,50	81,50	78,90	75.40	69.90	54,60	48,70	39,60	;OK;	OK;	OK;	OK
0,553	M1-21-80	92,00	93,60	90.60	88,70	83,50	69,90	58,50	46,90	38,40	;OK;	OK;	OK;	OK
0,554	M1-25-81	105,70	93,40	89.80	81,70	72,80	64,70	50,60	43,20	36,30	;OK;	OK;	OK;	OK
0,574	M1-37-82	79.00	83,20	80,10	76,50	71,90	61,30	52,30	44,90	39,60	;OK;	OK;	OK;	OK
0,574	M1-41-83	91,90	86,10	81,60	75,60	72,10	61,90	52,30	45,80	39,60	;OK;	OK;	OK;	OK
0,574	M1-53-84	84,90	85,10	81,80	79,00	76,40	65,40	54,60	47,30	40.50	;OK;	OK;	OK;	OK
0,594	M1-57-85	93,40	88,30	83,40	77,30	72.70	63,80	56.00	47,40	40,30	;OK;	OK;	OK;	OK
0,614	M1-69-86	97,10	93,50	90,40	87,60	82,00	70,20	60,90	52,40	45,70	;OK;	OK;	OK;	OK
0,615	M1-73-87	85,90	85,00	80,90	75.10	72,60	63,00	56.00	49.60	43,70	;OK;	OK;	OK;	OK
0,013	M1-101-	05,50	03,00	00,30	73,10	72,00	00,00	30,00	43,00	40,00	,Οιλ,	OIX,	OIX,	OK
0,644	90*)	114,50	121.00	117,20	108 20	99,50	83.10	70.40	58,00	48 20	;OK;	OK;	OK;	OK
0,645	M1-105-91	104,30	102,60	97.40	92,30	86,70	76,60	64.80	56.70	49,00	:OK:	OK:	OK:	OK
0.654	M1-117-92	101,50	108,20	106,90		96,20	82,20	71,20	60,90	51,60	;OK;	OK;	OK;	OK
0,655	M1-121-93	116,00	116,70	109.30		95.10	80,30	72,30	59,60	50.30	;OK;	OK;	OK;	OK
0,674		98.00	96,00	95,40	94,40	93,30	80,80	69.10	57.20	47,50	;OK;	OK;	OK;	OK
0,675	M1-137-95	116,10	112,60	105,60	98,40	90,80	76,90	63,50	53,90	45,20	;OK;	OK;	OK;	OK
0.695	M1-133-94	106,20	108,70	107,60	98,40	92,10	79,00	66,20	53,50	44,70	;OK;	OK;	OK:	OK
0,696	M1-137-95	122,60	124,60			105,40	91,40	77,20	66,90	57,20	;OK;	OK;	OK;	OK
0,715	M1-149-96	114,20	116,80	115,20		113,10	92,40	76,00	62,20	51,10	;OK;	OK;	OK;	OK
0,715	M1-153-97	152,80	138,20			106,40	91,50	74,60	63,60	51,50	;OK;	OK;	OK;	OK
0,716	M2-1-98	124,60	118,50		102,90	94,10	81,50	71,70	60,70	51,70	;OK;	OK;	OK;	OK
0,737	M2-1-99	140,00	111,70	109,10	98,00	90,30	79,60	69,10	57,65	47,50	;OK;	OK;	OK;	OK
0,738	M2-3-100	103,20	98,20	94,30	87,10		70,10	60,90	54,60	46,60	;OK;	OK;	OK;	OK
0,748	M2-3-101	142,60	92,40	91,40	78,60	77,00	63,70	60,80	50,70	42,80	;OK;	OK;	OK;	OK
0,748	M2-5-102	109,40	102,40	95,90	88,90		71,50	60,60	52,40	45,40	;OK;	OK;	OK;	OK
0,762	M2-5-103	131,50	97,50	93,60	86,40	80,10	69,70	60,60	49,70	41,80	;OK;	OK;	OK;	OK
0,763	M2-7-104	103,80	97,80	92,50	87,00	82,30	71,90	64.50	56,40	49,60	;OK;	OK;	OK;	OK
0,775	M2-7-105	119,10	99,10	91,50	83,90	78,90	68,50	58,00	47,70	41,40	;OK;	OK;	OK;	OK
0,776	M2-9-106	115,80	106,20	96,10	88,80	80,90	70,80	60,70	51,40	44,00	;OK;	OK;	OK;	OK
0,796	M2-9-107	98,80	106,20	91,90	84.70	78,30	65.60	55,80	47.70	40.20	:OK:	OK:	OK:	OK
0.797	M2-11-108	89,20	82,70	78,70	73,30	68,80	60,00	49.60	45,30	36,60	;OK;	OK;	OK;	OK
0,816	M2-11-109	103,00	98,20	90.90	83,40	76,20	65,60	58,20	48,50	41.10	;OK;	OK;	OK:	OK
	M2-13-110	92,90	86,50	,		71,00				, -	;OK;	OK;	OK;	OK
	M2-13-111	101,90	92,10			72,70					;OK;	OK;	OK;	OK
	M2-15-112	88,90	82,70	76,90					41,90		;OK;	OK;	OK;	OK
	M2-15-113	107,70	109,20	97,00		82,70			49,20		;OK;	OK;	OK;	OK
	M2-17-114	101,50	90,00	84,30		68,10				34,30	;OK;	OK;	OK;	OK
	M2-17-115	127,20	89,20	83,20		70,20		50,00	42,50		;OK;	OK;	OK;	OK
	M2-19-116	111,70	100,80			74,80		53,60	45,50		;OK;	OK;	OK;	OK
	M2-19-117	115,00	114,80	107,20					54,40		;OK;	OK;	OK;	OK
	M2-21-118	95,10	92,00	,	,	74,70	,	-			;OK;	OK;	OK;	OK
			•					•		-				

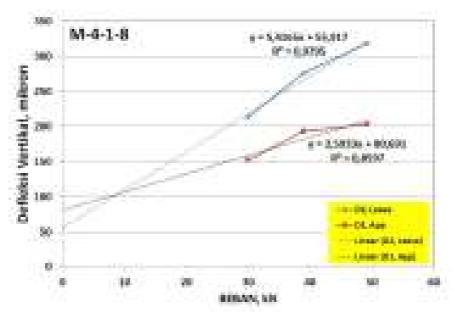

Sta.	Simbol	D1, App	D2, Leave	D3	D4	D5	D6	D7	D8	D9	LTE = $< d_2/d_1$ Maks 0,6;	(d1-d2) < 80 mm;	[(D ₂ +D ₁)/2] <570;	Indksi Voids
0,935	M2-21-119	119,80	116,90	110,20	96,90	88,40	61,80	57,70	48,90	37,00	;OK;	OK;	OK;	OK
0,936	M2-23-120	115,80	112,10	104,70	95,50	90,50	75,90	65,30	53,60	44,50	;OK;	OK;	OK;	OK
0,944	M2-23-121	134,30	158,90	105,50	93,50	84,90	69,00	56,40	46,50	39,10	;OK;	OK;	OK;	OK
0,945	M2-25-122	126,70	111,10	102,40	87,90	83,00	70,20	57,10	46,80	40,10	;OK;	OK;	OK;	OK
0,956	M2-25-123	285,50	152,40	138,50	127,00	113,50	94,10	63,30	55,00	41,60	;OK;	OK;	OK;	OK
0,957	M6A-1-124	182,90	200,40	159,60	126,20	109,10	82,10	64,40	52,10	43,10	;OK;	OK;	OK;	OK
1,011	M6A-1-125	239,20	303,10	253,20	206,10	167,00	111,20	89,80	68,70	53,70	;OK;	OK;	OK;	OK
1,011	M6A-1-126	205,80	174,60	158,40	131,20	113,80	91,10	76,70	64,00	54,50	;OK;	OK;	OK;	OK
1,056	M6A-1-127	527,40	719,00	712,00	241,00	212,70	154,70	107,90	73,20	55,00	;OK;	192	623	311
1,057	M6A-3-128	311,10	264,40	233,90	193,40	164,40	123,50	92,90	71,40	55,80	;OK;	OK;	OK;	OK
1,087	M6A-3-129	112,10	106,40	98,50	89,40	82,10	67,90	58,20	47,90	39,70	;OK;	OK;	OK;	OK
1,126	M6A-3-130	257,70	313,20	308,10	325,70	286,40	84,10	74,70	63,30	53,20	;OK;	OK;	OK;	OK


Gambar 12-g. Lendutan (D1) pada Perkerasan Beton, Kebumen-Buntu (Sta 0+000 – Sta 1+122)

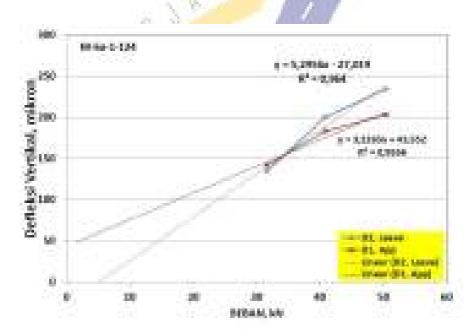

Gambar 12-h. Analisis Voids pada PPCP 5 Strands (M5)


Gambar 12-i. Analisis Voids pada PPCP 4 Strands + Wire Mesh (M4)


Gambar 12-j. Analisis Voids pada Beton Karet PCP Pracetak (M3)


Gambar 12-k. Analisis Voids pada Beton Konvensional Cor Di tempat (M6b)

Gambar 12-I. Analisis Voids pada Beton Fiber Cor Di Tempat (M2)



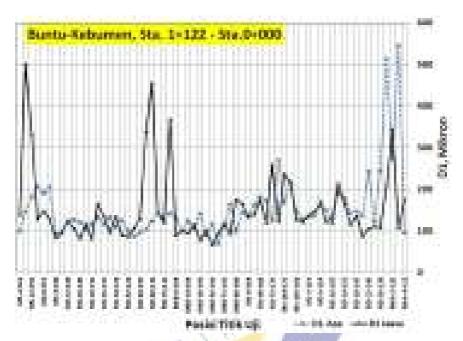
Gambar 12-m. Analisis *Voids* pada Beton Prategang *Post Tensioned* Cor Di Tempat (M6a)

Gambar 12-n. Analisis *Voids* pada PPCP 4 *Strand* + *Wire Mesh* (M4)

Terindikasi *Void*

Gambar 12-o. Analisis *Voids* pada Beton Prategang *Post Tensioned* Cor Di Tempat (M6a) Terindikasi *Void*

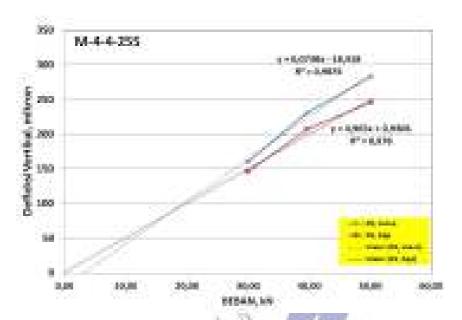
2) Buntu-Kebumen

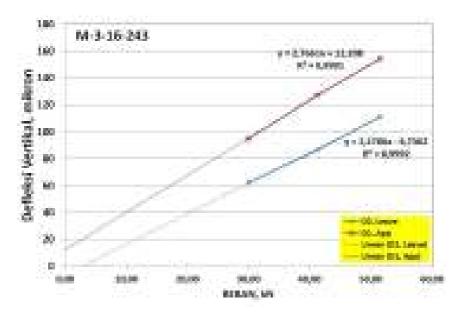

Berdasarkan analisis dalam Tabel 7 menunjukkan bahwa seluruh sambungan kuat menerima beban, ditunjukkan dengan nilia LTE > 0.6. Dari 130 titik uji, selisih defleksi lebih besar dari 80 mikron hanya terjadi di dua titik (1,5%), dan yang terindikasi void ada 6 titik (4,5%).

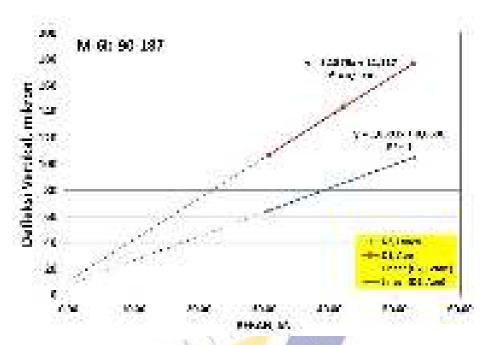
Tabel 8 Data Lendutan arah Buntu-Kebumen

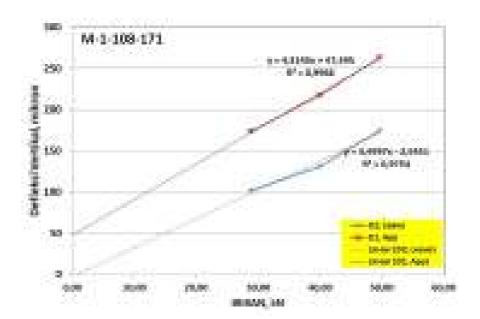
Sta.	Simbol	D1, App	D2, Leave	D3	D4	D5	D6	D7	D8	D9	LTE < 0,6;	(d1- d2) < 80;	[(D2+D1) / 2] < 570;	Ind Voids
1,122	M6A-4-131	175	203	155	135	118	93	76	61	50	OK	OK	OK	OK
1,082	M6A-4-132	91	96	87	81	75	62	52	45	37	OK	OK	OK	OK
1,052	M6A-4-133	107	627	97	126	84	67	54	46	41	OK	OK	OK	OK
1,052	M6A-2-134	467	545	389	321	237	158	111	82	63	OK	OK	OK	140
1,007	M6A-2-135	343	218	112	104	91	80	65	55	45	OK	125	OK	OK
1,006	M6A-2-136	287	274	214	175	137	101	83	65	57	OK	OK	OK	OK
0,952	M6A-2-137	209	520	201	176	154	113	86	60	47	OK	OK	OK	OK
0,951	M2-26-138	422	513	385	334	262	164	102	73	56	OK	OK	OK	OK
0,940	M2-26-139	108	156	100	88	82	66	57	46	38	OK	OK	OK	OK
0,940	M2-24-140	226	244	184	153	118	86	67	56	45	OK	OK	OK	OK
0,931	M2-24-141	110	118	102	91	82	67	54	46	37	OK	OK	OK	OK
0,93	M2-22-142	107	122	102	93	81	66	52	46	37	OK	OK	OK	OK
0,923	M2-22-143	104	262	96	88	80	66	54	45	38	OK	OK	OK	OK
0,922	M2-20-144	229	242	191	146	138	105	82	69	58	OK	OK	OK	OK
0,893	M2-20-145	87	120	90	79	76	67	52	45	36	OK	OK	OK	OK
0,892	M2-18-146	123	137	114	103	93	76	62	51	41	OK	OK	OK	OK
0,862	M2-18-147	135	124	120	93	94	74	63	47	38	OK	OK	OK	OK
0,862	M2-16-148	135	146	117	103	92	73	60	48	40	OK	OK	OK	OK
0,837	M2-16-149	115	126	105	94	86	70	56	46	37	OK	OK	OK	OK
0,837	M2-14-150	130	143	115	110	92	77	62	47	35	OK	OK	OK	OK
0,813	M2-14-151	164	172	146	132	112	88	69	58	47	OK	OK	OK	OK
0,813	M2-12-152	164	179	137	120	103	83	69	53	44	OK	OK	OK	OK
0,793	M2-12-153	214	178	170	141	122	93	75	58	46	OK	OK	OK	OK
0,793	M2-10-154	198	192	157	136	116	90	72	57	47	OK	OK	OK	OK
0,772	M2-10-155	133	123	116	106	97	79	68	55	47	OK	OK	OK	OK
0,772	M2-8-156	114	119	102	97	89	76	64	55	48	OK	OK	OK	OK
0,759	M2-8-157	123	164	116	104	95	77	67	53	44	OK	OK	OK	OK
0,759	M2-6-158	136	150	124	108	103	85	71	60	50	OK	OK	OK	OK
0,745	M2-6-159	164	188	139	123	108	89	71	58	47	OK	OK	OK	OK
0,744	M2-4-160	155	170	138	124	113	91	74	63	51	OK	OK	OK	OK
0,734	M2-4-161	146	144	129	117	107	89	76	63	53	OK	OK	OK	OK
0,734	M2-2-162	116	138	115	108	97	81	73	63	48	OK	OK	OK	OK
0,722	M2-2-163	137	160	112	106	99	84	70	57	47	OK	OK	OK	OK
0,712	M1-156-164	102	133	98	86	86	73	64	55	46	OK	OK	OK	OK
0,711	M1-152-165	123	138	116	101	96	80	67	58	50	OK	OK	OK	OK
0,692	M1-140-167	114	128	107	95	91	76	66	56	48	OK	OK	OK	OK
0,691	M1-136-168	128	141	117	108	96	82	68	57	48	OK	OK	OK	OK
0,672	M1-124-169	115	148	107	109	91	76	62	52	43	OK	OK	OK	OK
0,671	M1-120-170	216	215	180	162	136	106	92	69	55	OK	OK	OK	OK

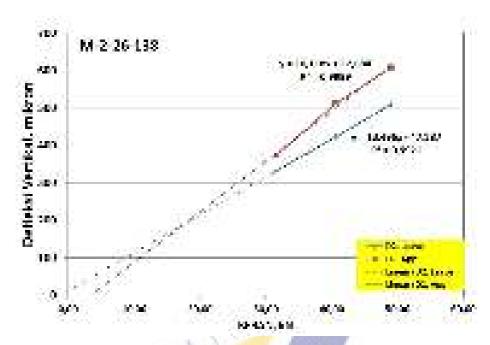
Sta.	Simbol	D1, App	D2, Leave	D3	D4	D5	D6	D7	D8	D9	LTE < 0,6;	(d1- d2) < 80;	[(D2+D1) / 2] < 570;	Ind Voids
0,651	M1-108-171	131	217	115	113	94	74	59	48	39	OK	OK	OK	OK
0,651	M1-104-172	236	240	199	165	148	116	95	76	62	OK	OK	OK	OK
0,631	M1-92-173	81	167	68	62	57	47	40	34	31	OK	OK	OK	OK
0,631	M1-88-174	123	134	107	94	84	68	58	47	39	OK	OK	OK	OK
0,611	M1-76-175	128	270	115	104	94	76	62	52	44	OK	OK	OK	75
0,611	M1-72-176	259	239	220	172	151	115	92	72	56	OK	OK	OK	OK
0,591	M1-60-177 A	91	126	85	77	71	62	48	47	32	OK	OK	OK	OK
0,59 0,571	M1-56-178	119	136	109	99	87	75	71	53	47	OK	OK	OK	OK
	M1-44-179 M1-40-180	111 174	173 177	103 140	93 128	86 108	72 89	61 76	53 63	46 52	OK OK	OK OK	OK OK	OK OK
0,57	M1-40-180 M1-28-181	173	181	146	137	114	92	77	61	50	OK	OK	OK	OK
0,55	M1-24-182	140	159	139	87	107	90	85	71	52	OK	OK	OK	OK
0,53	M1-12-183	133	162	120	108	99	83	69	57	48	OK	OK	OK	OK
0,53	M1-8-184	133	152	123	117	102	85	72	60	50	OK	OK	OK	OK
0,51	M6B-98-185	90	138	85	82	75	65	56	48	41	OK	OK	OK	OK
0,509	M6B-96-186	165	183	152	141	122	101	84	69	55	OK	OK	OK	OK
0,489	M6B-90-187	86	144	82	79	73	64	55	47	40	OK	OK	OK	OK
0,489	M6B-82-189	176	194	161	151	129	104	84	68	57	OK	OK	OK	OK
0,471	M6B-88-188	96	100	89	74	77	65	55	48	40	OK	OK	OK	OK
0,47	M6B-80-190	93	96	86	81	74	64	55	47	40	OK	OK	OK	OK
0,45	M6B-74-191	95	164	90	83	78	66	56	48	40	OK	OK	OK	OK
0,45	M6B-72-192	119	129	108	97	91	7 7	66	55	46	OK	OK	OK	OK
0,432	M6B-66-193	98	111	92	78	79	68	57	51	42	OK	OK	OK	OK
0,431	M6B-64-194	93	101	88	82	77	67	58	50	43	OK	OK	OK	OK
0,411	M6B-58-195	64	69	65	65	61	55	46	43	37	OK	OK	OK	OK
0,411	M6B-56-196	66	69	63	61	58	53	47	42	37	OK	OK	OK	OK
0,391	M6B-50-197	106	117	97	90	80	69	56	49	38	OK	OK	OK	OK
0,391	M6B-48-198	102	103	92	71	77	64	57	49	38	OK	OK	OK	OK
0,371	M6B-42-199	86	89	80	77	72	64	57	49	43	OK	OK	OK	OK
0,371	M6B-40-200	78	81	75	70	68	62	54	48	41	OK	OK	OK	OK
0,351	M6B-34-201	117	141	111	103	92	77	63	53	45	OK	OK	OK	OK
0,351	M6B-32-202	116	128	106	98	89	76	63	53	44	OK	OK	OK	OK
0,331	M6B-26-203	115	104	89	90	75	65	54	46	38	OK	OK	OK	OK
0,331	M6B-24-204	96	104	88	82	76	65	57	48	41	OK	OK	OK	OK
0,311	M6B-18-205	83	125	79 93	73	69 79	60 67	52 55	46	40	OK OK	OK	OK	OK
0,311	M6B-16-206 M6B-10-207	101 74	110	69	86 63	58	50	41	50	43 27	OK	OK OK	OK OK	OK OK
0,29	M6B-8-208	90	97	84	79	70	59	48	35 41	34	OK	OK	OK	OK
0,269	M6B-2-209	81	131	79	78	70	61	50	44	37	OK	OK	OK	OK
0,269	M3-80-210	368	387	339	323	280	227	188	137	98	OK	OK	OK	OK
0,259	M3-80-211	91	143	89	60	74	62	63	48	39	OK	OK	OK	OK
0,259	M3-76-212	122	135	112	106	92	78	64	52	42	OK	OK	OK	OK
0,25	M3-76-213	142	133	144	148	68	61	54	48	42	OK	OK	OK	OK
0,249	M3-72-214	144	164	129	119	104	86	71	59	49	OK	OK	OK	OK
0,239	M3-72-215	72	144	79	86	64	57	55	43	38	OK	OK	OK	OK
0,239	M3-68-216	455	448	358	341	286	226	179	126	90	OK	OK	OK	213
0,23	M3-68-217	134	124	131	142	141	81	71	63	55	OK	OK	OK	OK
0,228	M3-64-218	338	345	318	280	260	216	176	134	99	OK	OK	OK	OK
0,22	M3-64-219	108	104	110	112	115	58	51	44	38	OK	OK	OK	OK
0,218	M3-60-220	129	142	122	117	104	89	78	66	54	OK	OK	OK	OK
	•							•			•		-	

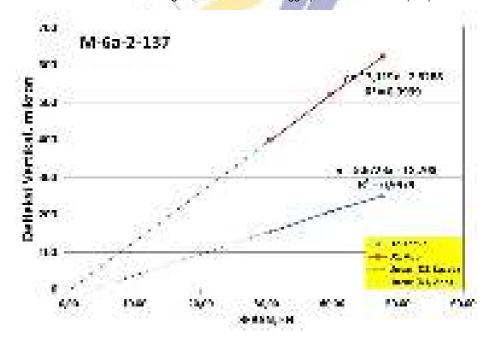

Sta.	Simbol	Арр	D2, Leave	D3	D4	D5	D6	D7	D8	D9	LTE < 0,6;	(d1- d2) < 80;	[(D2+D1) / 2] < 570;	Ind Voids
0,209	M3-60-221	103	96	103	100	77	66	56	49	42	OK	OK	OK	OK
0,208	M3-56-222	106	115	100	93	87	74	61	53	43	OK	OK	OK	OK
0,199	M3-56-223	90	87	89	91	72	62	52	44	39	OK	OK	OK	OK
0,198	M3-52-224	86	89	82	68	72	63	55	48	43	OK	OK	OK	OK
0,189	M3-52-225	110	101	109	75	70	61	52	46	39	OK	OK	OK	OK
0,188	M3-48-226	91	97	85	85	74	66	56	49	43	OK	OK	OK	OK
0,179	M3-48-227	147	126	69	49	59	50	44	38	34	OK	OK	OK	OK
0,178	M3-44-228	134	148	120	115	98	78	65	54	44	OK	OK	OK	OK
0,169	M3-44-229	119	109	119	125	73	62	53	45	39	OK	OK	OK	OK
0,168	M3-40-230	99	107	92	87	78	66	56	48	41	OK	OK	OK	OK
0,159	M3-40-231	172	133	150	152	62	55	48	42	36	OK	OK	OK	OK
0,158	M3-36-232	135	155	125	112	99	81	68	58	46	OK	OK	OK	OK
0,149	M3-36-233	75	116	71	68	62	54	46	40	35	OK	OK	OK	OK
0,148	M3-32-234	164	182	151	139	121	95	74	59	47	OK	OK	OK	OK
0,139	M3-32-235	151	133	71	64	62	54	47	41	36	OK	OK	OK	OK
0,138	M3-28-236	81	87	75	82	65	56	47	42	37	OK	OK	OK	OK
0,129	M3-28-237	133	116	67	62	58	51	43	39	34	OK	OK	OK	OK
0,128	M3-24-238	116	124	106	98	86	71	60	48	40	OK	OK	OK	OK
0,118	M3-24-239	119	104	81	79	70	59	50	43	37	OK	OK	OK	OK
0,118	M3-20-240	82	86	77	75	66	56	47	40	34	OK	OK	OK	OK
0,108	M3-20-241	100	121	94	88	78	65	52	43	36	OK	OK	OK	OK
0,108	M3-16-242	107	113	99	87	84	70	58	48	41	OK	OK	OK	OK
0,098	M3-16-243	86	127	81	78	70	59	51	42	38	OK	OK	OK	OK
0,098	M3-12-244	124	138	113	100	92	74	68	50	42	OK	OK	OK	OK
0,088	M3-12-245	101	125	95	89	84	73	64	54	47	OK	OK	OK	OK
0,088	M3-8-246	96 89	102	92 82	89 81	84	72 58	61	51	43	OK OK	OK OK	OK OK	OK OK
0,078	M3-8-247	- 100	96			68		48 52	40	32				
0,078	M3-4-248 M3-4-249	107	84 94	79 110	73 113	70 72	61 62	52	42 44	35 36	OK OK	OK OK	OK OK	OK OK
0,068							68	-	44		_	_		
0,067	M4-12-250 M4-12-251	128	123	107 123	92	81 83	69	53 58	46	35 38	OK OK	OK OK	OK OK	OK OK
0,056	M4-8-252	148	201	132	119	101	79	62	50	40	OK	OK	OK	OK
0,036	M4-8-253	314	191	174	109	96	75	60	49	40	OK	123	OK	176
0,044	M4-4-254	129	143	119	108	95	76	57	50	39	OK	OK	OK	OK
0,044	M4-4-255	231	207	159	115	103	87	71	58	47	OK	OK	OK	OK
0,032	M5-12-256	330	363	275	238	203	151	114	85	66	OK	OK	OK	170
0,032	M5-12-257	179	183	156	82	85	75	60	54	51	OK	OK	OK	OK
0,02	M5-8-258	501	533	431	379	294	206	149	101	71	OK	OK	OK	99
0,019	M5-8-258	199	145	147	106	93	76	62	51	43	OK	OK	OK	OK
0,008	M5-4-260	138	142	127	118	102	84	67	55	43	OK	OK	OK	OK
-0.004	M5-4-261	140	99	129	115	99	81	67	56	43	OK	OK	OK	OK
-0,004	IVIJ-4-201	140	33	123	110	99	υı	UI	JU	40	ΟN	ΟN	OK	<u> </u>

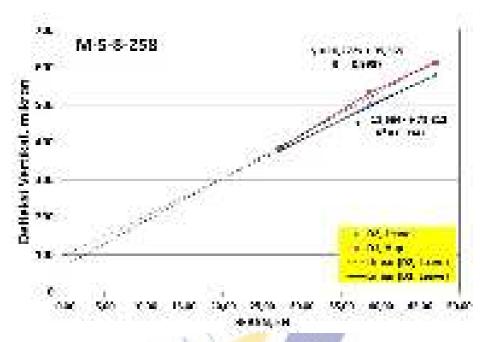

Gambar 12-p. Lendutan (D1) pada Perkerasan Beton, Buntu-Kebumen (Sta 1+122 - Sta 0+000)

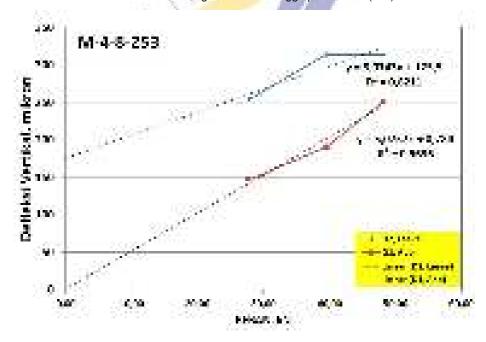

Gambar 12-q. Kemungkinan Rongga pada Approach Edge Panel pada PPCP (M5)

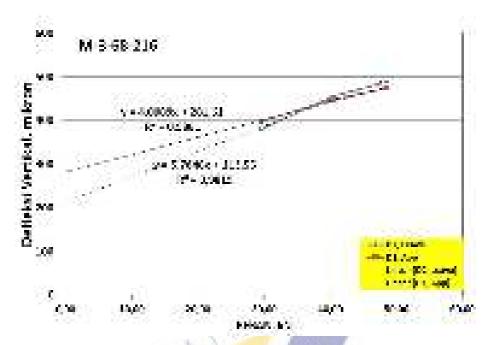

Gambar 12-r. Kemungkinan Tidak Ada Rongga pada Approach Edge Panel pada PPCP (M4)

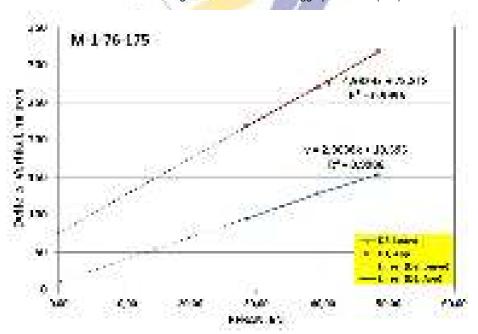

Gambar 12-s. Kemungkinan Tidak Ada Rongga pada *Approach Edge Panel* pada PCP Karet (M3)

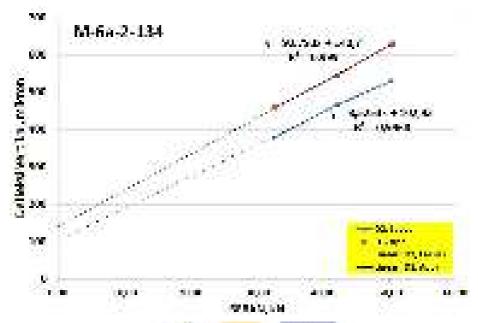

Gambar 12-t. Kemungkinan Tidak Ada Rongga pada Segmen Beton CIP (M6b)


Gambar 12-u. Kemungkinan Tidak Ada Rongga pada PCP Konvensional (M1)

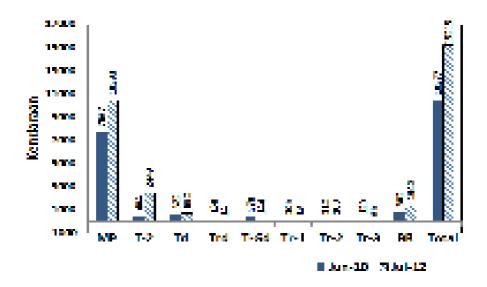

Gambar 12-v. Kemungkinan Tidak Ada Rongga pada Beton Fiber (M2)


Gambar 12-w. Kemungkinan Tidak Ada Rongga pada PSCP PascaTarik (M6a)


Gambar 12-x. Kemungkinan Ada Rongga pada PPCP (M5)


Gambar 12-y. Kemungkinan Masih Ada Rongga pada PPCP (M4)

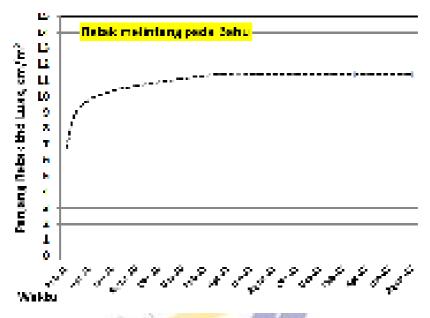
Gambar 12-z. Kemungkinan Masih Ada Rongga pada PCP (M3)


Gambar 12-aa. Kemungkinan Masih Ada Rongga pada PCP (M1) di AE

Gambar 12-bb. Kemungkinan masih ada rongga pada beton prategang post tensioned cor di tempat (M6a)

2.1.9. Lalu lintas

Volume lalu lintas kendaraan berat seperti truk dan bus berbagai jenis sebanyak sekitar 2300 kendaraan per hari selama tahun 2010, ditunjukkan dalam Gambar 13-a. Pada tahun 2012, volume lalu lintas kendaraan truk berat relatif menurun, tetapi kendaraan truk ringan, bus dan penumpang umum meningkat dengan tajam. Total kendaraan termasuk kendaraan penumpang umum dan sejenisnya pada Juni 2010 sebanyak 10.377 kendaraan, meningkat sekitar 50% pada Juli 2012 menjadi sekitar 15.215 kendaraan. Mobil penumpang (MP), truk kecil (T.2), truk dual wheel (Td) dan bus besar (BB) meningkat secara signifikan, tetapi truk besar lainnya menurun.


Gambar 13-a. Lalu Lintas Harian Rata-rata Tahun 2010 dan Tahun 2012

2.1.10. Kondisi Bahu

Bahu jalan terdiri atas bahu beton dan lapisan agregat kelas B yang dipadatkan. Bahu beton lebar 60 cm, tebal 28 cm, mutu K-250, dipasang bersamaan dengan pemasangan beton pracetak dan beton cor di tempat. Setiap 5 meter dipasang dua buah dowel berdiameter 25 mm, panjang 60 cm. Kondisi permukaan bahu jalan dan sambungannya dipantau bersamaan dengan lajur utama beton. Kondisi permukaan pada umumnya retak melintang dan permukaan aus akibat lalu lintas kendaraan yang menginjak bahu beton. Analisis retak melintang digambarkan dalam Gambar 14-a. Retak pada bahu jalan berhenti pada umur sekitar 20 bulan (Agustus 2011). Kerusakan yang dominan pada bahu jalan beton karena mutu beton relatif rendah di beberapa tempat sehingga terjadi pengausan. Lihat Gambar 14-b.

Bahu jalan di bagian luar bahu beton, dilapisi dengan agregat kelas B selebar antara 2,4 meter dan 3,2 meter, tebal antara 20 cm dan 30 cm. Kondisi saat ini (September 2012) kondisinya terjadi *scouring*, posisi lebih rendah (*shoulder drop off*) antara 2 cm dan 10 cm. Bahu jalan beton yang hancur per September 2012 diperkirakan mencapai 18 m2 tersebar di beberapa tempat

yang memerlukan perbaikan untuk keselamatan pengguna jalan. Lihat Gambar 14-b.

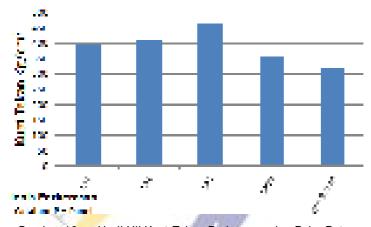
Gambar 14-a. Perkembangan Retak Melintang pada bahu beton (Maret 2010 s/d Agustus 2012)

Gambar 14-b. Foto kondisi bahu beton per Agustus 2012

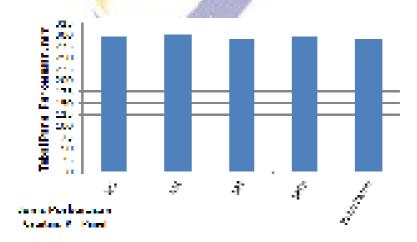
2.1.11. Kondisi Drainase Tepi

Untuk mengendalikan air permukaan terutama air hujan, saluran drainase di bagian tepi bahu jalan ditata sehingga tembok yang berfungsi sebagai dinding saluran juga dapat berfungsi untuk penyokong bahu jalan. Air hujan dikendalikan sehingga dihindarkan adanya air tergenang di bahu jalan. Dalam Gambar 15-2 terjadi dinding drainase bagian luar terguling ke arah dinding penahan tanah badan jalan akibat banjir besar pada bulan November tahun 2010, yang memerlukan perbaikan segera. Bila tidak dilakukan perbaikan dikhawatirkan akan terjadi penyumbatan sehingga akan mengganggu lahan pertanian yang ada disekitarnya.

Gambar 15-1 Foto kondisi drainase jalan pada saat pelaksanaan



Gambar 15-2 Foto kondisi drainase umur 2 bulan (kiri) dan 1 tahun (kanan, rebah 32 m)


2.2. Data Laboratorium

2.2.1. Kuat Tekan dan Tebal Perkerasan/ Bahu Beton

Berdasarkan uji kuat tekan dari contoh hasil core drill diperoleh nilai kuat tekan untuk M1, M2, M3 dan M6b, ditunjukkan dalam Gambar 16-a. Nilai kuat tekan perkerasan beton pracetak prategang (M4 dan M5) serta beton konvensional cor di tempat yang diprategang pasca tarik (M6a) tidak diambil contoh uji karena khawatir akan merusak *strand* yang sudah dipasang kabel prategang. Dalam Gambar 16-b ditunjukkan tebal rata-rata perkerasan badan bahu beton.

Gambar 16-a. Hasil Uji Kuat Tekan Perkerasan dan Bahu Beton

Gambar 16-b. Hasil Pengukuran Tebal Perkerasan dan Bahu Beton

2.2.2. Pola Retak Arah Vertikal

Pola retak vertikal yang diperlihatkan pada seluruh benda uji berbentuk silinder diameter 10 cm menunjukkan pola yang serupa yaitu retak terjadi dari atas menuju ke bawah. Lihat Gambar 17-a sampai dengan Gambar 17-d. Potongan retak menunjukkan agregat yang saling mengunci dan tidak terjadi perubahan posisi salah satu sisi slab yang retak. Seluruh retakan bagian atas ditutup dengan sealant tuang panas. Seluruh retakan menunjukkan tidak ada perubahan penurunan yang menyebabkan faulting.

Gambar 17-a. Foto retak vertikal pada beton serat (M2) nomor 20 (Juni 2012)

Gambar 17-b. Foto retak vertikal pada beton serat (M2) nomor 12 (Juni 2012)

Gambar 17-c. Foto retak vertikal pada beton karet (M3) nomor 17 (Juni 2012)

Gambar 17-d. Foto retak vertikal pada beton pracetak konvensional (M1) nomor 57 (Juni 2012)

ANALISIS DATA DAN PEMBAHASAN JALAN TOL KANCI-PEJAGAN

3.1. Penilaian K<mark>ondisi</mark> Visual dan Mapping Kerusakan Permukaan Jalan

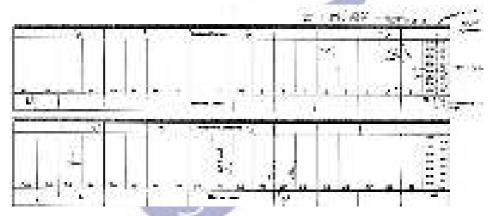
JAY

Rangkuman data hasil analisis kondisi permukaan jalan dapat dilihat dalam Tabel 9 dan Gambar 18- a. Peta kerusakan setiap segmen antara JP dengan JP berikutnya adalah sepanjang rata-rata 100 m, terdiri atas *Joint Panel* (JP), *Base Panel* (BP), dan *Central Panel* (CP). Satu segmen terdiri atas satu JP, (2 x 38) BP dan satu CP, seperti ditunjukkan secara tipikal untuk satu segmen dalam Gambar 18-b. Terdapat kondisi khusus bila ruang untuk JP lebih lebar sehingga dilakukan cor di tempat sebagai *Wet Joint Panel* (WJP) yang lebarnya disesuaikan dengan kondisi yang ada. Kondisi kerusakan yang dicatat (per Agustus 2010) meliputi jenis kerusakan yang tercantum dalam Tabel 9. Jumlah *Joint Panel* yang disurvai sebanyak 585 segmen, terdiri atas:

- a) Arah Kanci-Pejagan (Jalur A), 293 segmen
- b) Arah Pejagan-Kanci (Jalur B), 292 segmen.


Untuk mengetahui perkembangan kondisi selanjutnya dilakukan dua kali penilaian kondisi visual selama tahun 2012, pada segmen jalan tol Kanci-Pejagan sebagai berikut:

- a) Jalur A (arah ke Pejagan) : Sta 246+030 246+930, dan 258+015 258+845.
- b) Jalur B (arah ke Kanci): Sta 250+031 251+025, dan 255+975 256+940.

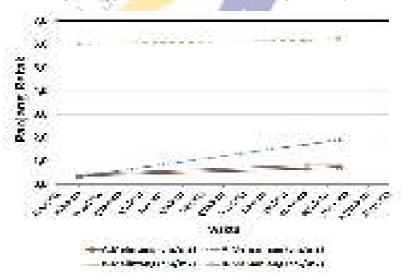

Tabel 9. Rangkuman Kondisi Permukaan Jalan Tol Kanci-Pejagan

Jenis Kerusakan pada Joint Panel	Kanci-Po (293)		Pejagan-Kanci (292 JP)				
	Jumlah, bh	%	Jumlah, bh	%			
Sealant rusak	184	62%	185	63%			
Tidak ada sealant	32	11%	45	15%			
Baik	65	22%	59	20%			
Pumping	90	30%	163	56%			
Retak	75	25%	156	53%			
Spalling (rocking)	69	23%	85	29%			
Faulting	24	8%	85	29%			
Tambalan	18	6%	54	18%			
Pumping di BP d <mark>an</mark> CP	2	1%	7	2%			

Catatan: Kondisi oprit setiap saat dilakukan perbaikan dengan tambalan untuk mencapai kerataan dengan lantai jembatan.

Gambar 18-a. Kondisi Jalan Tol Kanci-Pejagan (Agustus 2010)

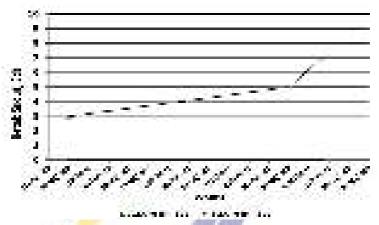
Gambar 18- b. Tipikal Kondisi Satu Segmen Jalan Tol Kanci-Pejagan Jalur A


1) Kondisi sambungan pada JP

Di beberapa tempat ditemukan *joint panel* hancur, retak dan amblas. Perbaikan dilakukan dengan pembongkaran dan diberi penulangan penuh kemudian dicor beton. Kerusakan jenis *pumping*, retak, *spalling*, *faulting* dan tambalan lebih banyak ditemukan di Jalur B (arah ke Kanci). Volume kerusakan *sealant*, celah sambungan kosong atau *sealant* tidak ada dan segmen yang masih baik di Jalur A dan di Jalur B relatif sama. Lebar celah retak sambungan ekspansi tercatat sekitar 1

cm – 12 cm untuk arah Kanci-Pejagan dan sekitar 1,2 cm – 23 cm arah Pejagan-Kanci. Bahan penutup celah yang ada relatif sulit ditemukan karena sudah hilang dan kosong dan yang ada berupa sejenis bahan Lapis Tipis Aspal Pasir atau Latasir (*Sand Sheet*) dan mortar beton. Kondisi sambungan berupa Latasir dan mortar beton rata-rata retak dan tidak ada lekatan (*bonding*) antara permukaan celah panel dengan bahan tersebut. Perkembangan seluruh kerusakan permukaan dapat dilihat dalam Gambar 18-c sampai dengan Gambar 18-k.

2) Retak melintang


Retak melintang dalam pengukuran ini diukur arah lebar terhadap satu panel ukuran panjang 8 m dan lebar 2,5 m. Jadi retak melintang panel diartikan sebagai retak yang sejajar sumbu jalan pada satu panel yang bersangkutan. Bila retak melintang lebih dari 2,5 meter artinya retak melintang lebih dari satu garis dalam satu panel tersebut. Dalam Gambar 18-c diperlihatkan panjang retak melintang terbanyak ditemukan di jalur B (arah ke Kanci) sekitar 6 cm/m2, sedang di jalur A (arah ke Pejagan) kurang dari 1 cm/m2. Retak tersebut cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut.

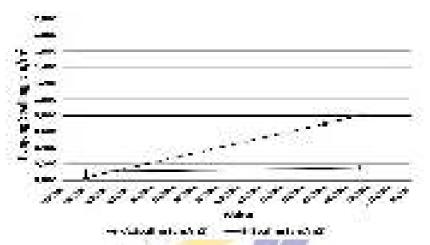
Gambar 18-c. Perkembangan retak memanjang dan melintang beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

3) Retak memanjang

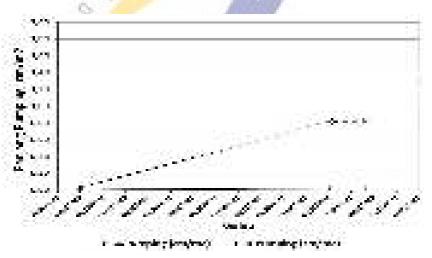
Retak memanjang dalam pengukuran ini adalah kebalikan dari retak melintang tersebut pada 0.2). Bila retak melintang lebih dari 8 meter artinya retak memanjang lebih dari satu garis dalam satu panel tersebut. Dalam Gambar 18-c diperlihatkan panjang retak memanjang terbanyak ditemukan di jalur B (arah ke Kanci) sekitar 2 cm/m2, sedang di jalur A (arah ke Pejagan) kurang dari 1 cm/m2. Retak tersebut cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut. Lihat Gambar 18-c.

Gambar 18-d. Perkembangan retak sudut beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

4) Retak sudut

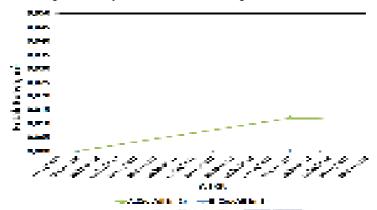

Retak sudut ditemukan di jalur A (arah ke Pejagan), sedang di jalur B relatif sedikit. Retak tersebut cenderung berkembang sehingga perlu monitoring lebih lanjut. Lihat Gambar 18- d.

5) Spalling


Gompal atau *spalling* ditemukan di jalur A (arah ke Pejagan) 0,8 cm/m2, sedang di jalur B relatif sedikit kurang dari 0,2 cm/m2. Spalling tersebut cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut. Lihat Gambar 18-e.

6) Pumping

Gompal atau *spalling* ditemukan di jalur A (arah ke Pejagan) 0,8 cm/m2, sedang di jalur B relatif sedikit kurang dari 0,1 cm/m2. Pumping tersebut cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut. Lihat Gambar 18-f.


Gambar 18-e. Perkembangan *spalling* beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

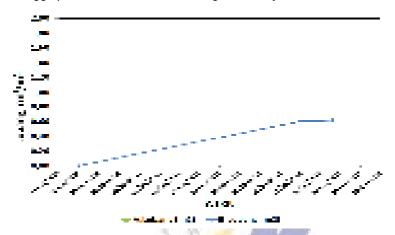
Gambar 18-f. Perkembangan pumping beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

7) Retak buaya

Retak buaya (*crocodile cracks*) ditemukan di jalur A (arah ke Pejagan) 0,015 m2/m2, sedang di jalur B relatif sedikit kurang dari 0,1 m2/m2. Retak buaya tersebut cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut. Lihat Gambar 18-g.

Gambar 18-g. Perkembangan retak buaya beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

8) Faulting

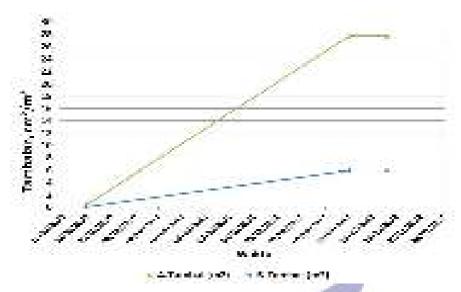

Faulting ditemukan di jalur B (arah ke Kanci) 4 cm/m2, sedang di jalur A relatif sedikit kurang dari 0,5 cm/m2. Faulting tersebut di jalur B cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut. Lihat Gambar 18-h.

Gambar 18-h. Perkembangan *faulting* beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

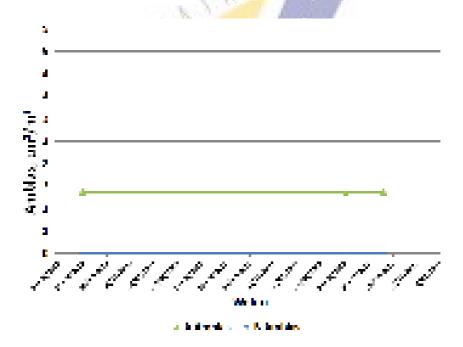
9) Lubang

Lubang ditemukan di jalur B (arah ke Kanci) 0,6 cm2/m2, sedang di jalur A relatif nihil. Lubang tersebut di jalur B cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut. Lihat Gambar 18-i.

Gambar 18-i. Perkembangan kerusakan bentuk lubang pada beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)


10) Tambalan

Tambalan ditemukan di jalur A (arah ke Pejagan) 28 cm2/m2, sedang di jalur B relatif lebih rendah (6 cm2/m2). Tambalan tersebut belum berkembang sampai umur 30 bulan, tetapi perlu dilakukan monitoring lebih lanjut. Lihat Gambar 18-j.


11) Amblas

Amblas ditemukan di jalur A (arah ke Pejagan) 1,25 m2/m2, sedang di jalur B relatif lebih rendah. Kerusakan amblas tersebut tidak berkembang karena dilakukan perbaikan secara rutin untuk memeliharan kenyamanan dan keselamatan bagi pengendara. Lihat Gambar 18-k.

Upaya perbaikannya dapat dilihat dari Gambar 19-a sampai dengan Gambar 19-d.

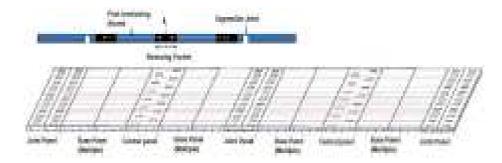
Gambar 18- j. Perkembangan tambalan pada beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

Gambar 18-k. Perkembangan amblas pada beton pracetak-prategang sampai umur 30 bulan (Tol Kanci-Pejagan)

Gambar 19-a. Foto perbaikan *full* depth pada Base Panel

Gambar 19-b. Foto penutupan retak pada *Joint Panel* (JP)

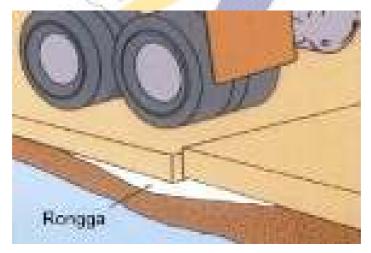
Gambar 19-c. Foto kerusakan pada bint Panel yang belum ditangani

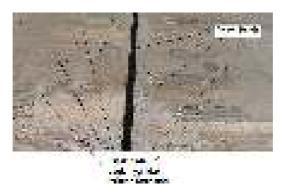


Gambar 19-d. Foto perbaikan *bint Panel* dgn metode beton T terbalik

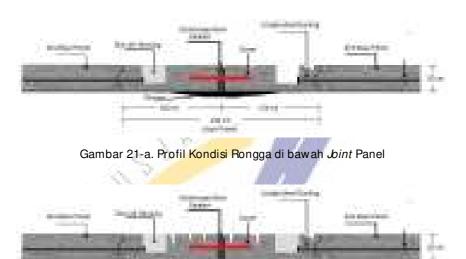
3.2. Perbaikan Sambungan Muai

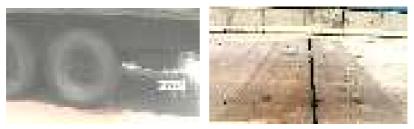
3.2.1. Pola Kerusakan Sambungan Muai Di Jalan Tol Kanci-Pejagan


Pola pemasangan panel-panel perkerasan beton pracetak di jalan Tol Kanci-Pejagan ditunjukkan dalam Gambar 20-a. Dalam Gambar 20-b ditunjukkan tipikal faulting dan rongga yang terjadi akibat repetisi beban kendaraan dan lemahnya lapisan bagian bawah sambungan muai sehingga terjadi retak seperti dalam Gambar 20-c.


Gambar 20-a. Posisi Joint Panel, Base Panel dan Central Panel di Tol Kanci Pejagan

Dalam Gambar 21-a dan Gambar 21-b ditunjukkan kondisi retak dan rongga yang terjadi. Dowel ada yang patah karena antara lain lebar celah sambungan muai yang relatif terlalu lebar.

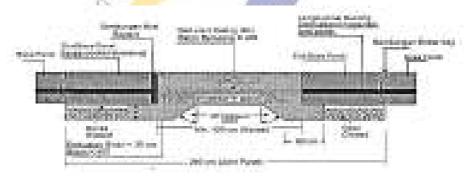

Pumping terjadi setelah hujan seperti ditunjukkan dalam Gambar 22-a. Dalam Gambar 22-b secara tipikal merupakan kondisi sambungan muai pada Joint Panel yang akan diperbaiki dengan metoda beton T terbalik (*Inverted T Concrete*).


Gambar 20-b. Ilustrasi *faulting* karena rongga di bawah sambungan

Gambar 20-c. Foto JP retak dan dowel patah

Gambar 21-b Profil Kondisi *Joint Panel*: Rongga di bawah Sambungan, *Pumping*, Dowel Patah, dan Retak

Gambar 22-a. Foto *pumping* kerusakan pada *Joint Panel* (retak, *sealant* hilang, *pumping*, dowel rusak/patah.



Gambar 22-b. Foto kerusakan pada *Joint Panel* (retak, *sealant* hilang, *pumping*, dowel rusak/patah)

3.2.2. Perubahan Bentuk Joint Panel

Perubahan *Joint Panel* (JP) menjadi *End Panel* (EP), dengan tambahan sambungan cor di tempat (*in situ wet joint*) berbentuk profil beton T terbalik (*inverted* T) yang disisipkan di antara end base panel lama. Lihat Gambar 23- a. End Panel adalah JP lama yang rusak kemudian dipotong antara sambungan dowel dan batas bidang stressing dalam slot stressing.

Langkah pelaksanaan perbaikan dengan *inverted T concrete* dapat diikuti dalam Gambar 23- b sampai dengan Gambar 23- m.

Gambar 23-a. Beton Inverted T Patch Cor di Tempat dan Fondasi Granular

Gambar 23-b. Foto sambungan Muai pada JP Gambar 23-c Foto pembongkaran Panel

Gambar 23-d. Foto pembongkaran fondasi dan Timbunan

Gambar 23-e. Foto penghamparan Fondasi Granular

Gambar 23-f. Foto pemadatan Fondasi Granular

Gambar 23-g. Foto pembesian dan Pengecoran Seeper Slab

Gambar 23-h. Foto pembesian End Panel Base

Gambar 23-i. Foto pengecoran End Panel Base

Gambar 23-j. Foto perataan permukaan

Gambar 23-k. Foto perawatan Panel

Gambar 23-I. Foto pengerjaan sambungan muai pada lajur cepat

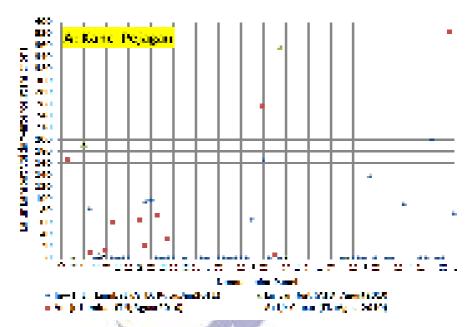
Gambar 23-m. Foto kondisi setelah selesai

Pada konsep *wet joint* dengan *inverted T*, diperoleh beberapa kelebihan, antara lain:

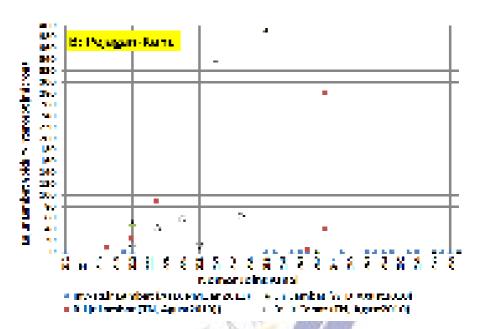
- Tidak diperlukan stressing pocket dan panel dapat menerima longitudinal stressing pada semua area hingga mencapai tepi joint panel.
- Tidak perlu dowel, tetapi celah sambungan ada di atas slab yang dicor di tempat dan diperkuat. Perkuatan slab membantu sokongan subbase di bawah joint [panel].
- Lebar celah untuk muai-susut pada *joint panel* dapat terukur karena beton dicor *insitu*.
- Wet joint panel dapat berfungsi sebagai panel adjuster.
- Perkuatan slab mengurangi efek pumping karena dibuat overlap dengan joint panel.

3.2.3. Drainase Bawah-Permukaan

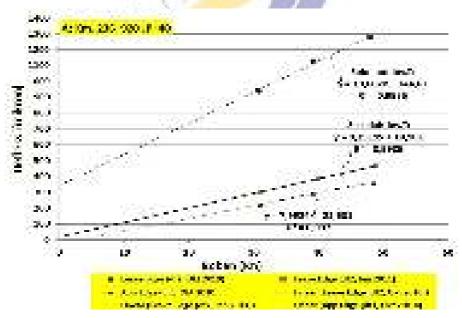
Perubahan sistem subbase dari lean concrete menjadi konsep drainage layer menggunakan material fondasi granular. Pada pekerjaan ini, drainase bawah-permukaan dipasang di ujung bahu luar. Lihat Gambar 23- n. Fondasi granular terdiri atas dua macam yaitu bergradasi tertutup (dense graded base or separation layer) dengan ukuran butir maksimum 1½ inci, tebal minimum 15 cm dan mempunyai koefisien rembesan, k < 15 ft/day. Fondasi tersebut dipasang di atas perbaikan tanah dasar atau stabilisasi tanah-semen dengan kadar semen sekitar 2%. Di atas fondasi ini dipasang lapisan fondasi bawah dengan ukuran butir maksimum satu inci, tebal minimum 15 cm dan mempunyai koefisien rembesan k > 1000 ft/day. Langkah pemasangan drainase bawah-permukaan ditunjukkan dalam Gambar 23-b sampai dengan Gambar 23-m. Salah satu permasalahan utama pada perkerasan, umumnya adalah terjadi pumping yang menyebabkan rusaknya perkerasan. Dengan pembuatan drainage base layer, efek pumping dapat dikurangi atau dihilangkan. (PT. Adhi Karya (Persero) TBK, Maret 2011).

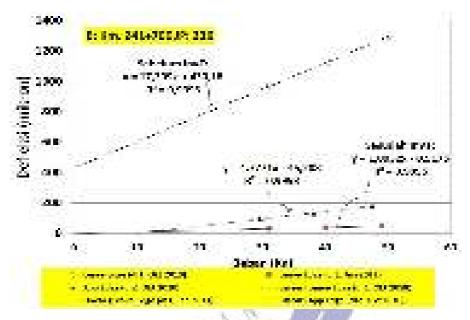

Gambar 23-n Pondasi granular dan drainase bawah-permukaan

Agar *Joint Panel* tidak kembali terjadi pumping, dan untuk mempercepat aliran air di bawah permukaan, maka dibuat drainase di ujung panel di sisi outer shoulder di bawah *lean concrete* yang ada. Dengan membungkus agregat menggunakan geotextile kemudian diisi dengan lapisan agregat sebagai filter, air akan tertampung dalam pipa berlobang dan mengalir ke ujung *outer shoulder*. Lihat Gambar 23-n.


3.2.4. Hasil Uji Lapangan

3.2.4.1 Voids Y-Intercept


Dari hasil uji lapangan dengan alat FWD diperoleh data defleksi dan voids Y-intercept seperti ditunjukkan dalam Gambar 24- a dan Gambar 24-b. Jumlah sambungan yang diukur berhasil menurunkan defleksi sekitar 95%.


Gambar 24-a *Voids –Intercept* setelah perbaikan dengan *Inverted T*, Jalur A (Jan 2011)

Gambar 24-b. Voids Y-Intercept setelah perbaikan dgn Inverted T, Jalur B (Jan 2011)

Gambar 24-c. Tipikal kondisi *Void Y-Intercept JP* 40, sebelum dan sesudah pemasangan *Inverted T Concrete*.

Gambar 24-d Tipikal kondisi *Void Y-Intercept JP* 236 sebelum dan sesudah pemasangan *Inverted T Concrete*.

Dalam Gambar 24-c dan Gambar 24-d ditunjukkan kondisi rongga sebelum dan sesudah dipasang beton *Inverted* T. Dari hasil perbaikan sambungan muai di 75 tempat berhasil menghentikan *pumping* yang terjadi sekitar 66 sambungan atau 88%.

3.2.5. Pembahasan

3.2.5.1. Penyebab Kegagalan Sambungan Muai

Ada beberapa penyebab kegagalan sambungan muai yang terjadi di jalan Tol Kanci-Pejagan, antara lain:

- Struktur perkerasan tidak dibangun seperti yang dirancang semula, misalnya lapisan bahan timbunan dan pondasi yang tidak memenuhi kriteria kompaksi bahan, sehingga kekuatan struktur lapisan pondasi lemah dan kondisi panel menjadi tidak stabil.
- Penggunaan bahan penutup (*sealant*) yang tidak tepat sehingga lekatan dengan celah sambungan tidak baik. Cara pemasangan yang tidak

sesuai antara lain kebersihan permukaan celah sambungan tidak terkontrol:

- Kurangnya kontrol kondisi celah sambungan yang sudah ditutup bahan pengisi atau penanganan kebocoran bahan penutup sejak dini;
- Curah hujan di daerah Kanci-Pejagan yang tinggi sehingga air yang merembes ke bawah lean concrete base dan air kapiler tanah yang naik ke atas melemahkan tanah dasar atau timbunan.
- Tidak tersedianya *permeable base* di bawah panel pracetak untuk membuang air secepatnya.
- Tidak mengikuti jadwal pemeliharaan atau perawatan sambungan muai.

Hal ini bukan karena kekeliruan kekurangan dalam teori desain, tetapi di antaranya karena:

- Pemilihan *lean concrete base* pada *permeable base*, air tidak secepatnya dikeluarkan dari *pavement system.*
- Perubahan yang tak terduga di lokasi setelah pelaksanaan.
- Quality control, pelaksanaan kompaksi soil subgrade yang kurang ketat, atau perubahan lingkungan seperti munculnya air tanah setelah pelaksanaan, adalah jenis perubahan yang tidak terduga.

3.2.5.2. Mekanisme terjadinya Pumping

Pada jalan tol Kanci-Pejagan, faulting dan pumping, mungkin menjadi salah satu kerusakan yang dominan pada Joint Panel. Dengan memahami mekanisme faulting dan pumping diharapkan dapat mengatasi jenis kerusakan ini. Pada umumnya ada empat kondisi yang menimbulkan faulting, yaitu:

 Akibat temperatur dan kelembaban sehingga menimbulkan lenting (curling dan warping) dengan adanya gradient temperatur pada pelat beton.

- Adanya air dan material halus di bawah panel atau sambungan tanpa disediakan penyaluran air keluar dari bawah panel.
- Beban kendaraan yang menyebabkan gerakan ujung slab.
- Celah sambungan berdekatan dengan area yang kurang stabil dan bergerak vertikal karena differential settlement.

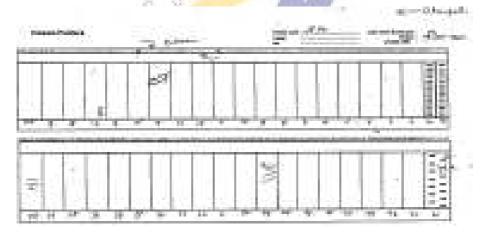
Dengan adanya gerakan ujung panel turun-naik akibat beban roda meninggalkan sambungan yang menekan air dan butiran halus sehingga rongga makin lama makin besar dan menyebabkan panel turun atau patah.

3.2.5.3. Perbaikan dengan Beton T Terbalik (*Inverted T Concrete*)

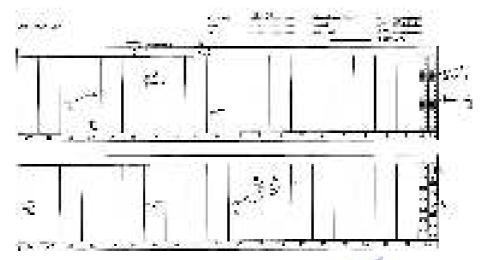
Metoda ini relatif baru untuk sambungan muai dan diaplikasikan sekitar November 2010 sampai Januari 2011 di jalan tol Kanci-Pejagan. Hasil uji lendutan dengan alat FWD menunjukkan bahwa dari sekitar 75 tempat perbaikan dengan beton T terbalik, 66 atau 88% tempat berhasil baik dengan indikasi voids Y-Intercept yang terjadi di bawah 50 mikron. Karena sambungan dilandasi dengan sleeper slab dalam inverted T concrete, maka kriteria efisiensi transfer beban tidak digunakan lagi. Kondisi permukaan sampai berumur enam bulan menunjukkan kondisi yang masih stabil. Bila menggunakan campuran cepat setting keuntungan yang diperoleh antara lain mutu beton dalam waktu 6 jam sudah mencapai 85% kekuatan rencana. Untuk perbaikan yang mendesak, maka perbaikan jenis ini dapat segera dibuka untuk lalu lintas.

Hal-hal yang perlu diperhatikan pada cara perbaikan dengan beton T terbalik antara lain penyiapan lapisan fondasi agregat menggunakan bahan granular dengan tebal minimum 15 cm dan bahan dense granular untuk lapisan di atasnya dengan tebal minimum 7,5 cm. Lapisan dasar harus cukup rata untuk mengurangi rongga yang besar di bawah panel. Penggunaan beton pracetak sebagai *sleeper* di bawah kedua ujung panel yang harus diselipkan ke bawah panel yang sudah ada relatif sulit, kecuali dilakukan cor di tempat. Penggunaan bahan beton cepat *setting* sesuai dengan *High Early Strength Concrete* dapat diaplikasikan karena pekerjaan akan lebih cepat. Untuk perencanaan jalan baru yang dipasang secara

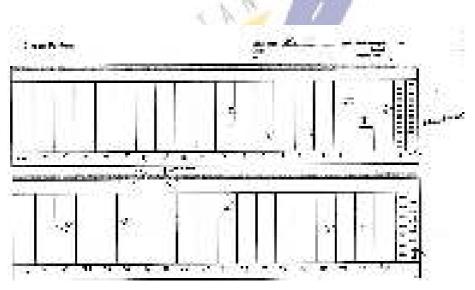
melintang seperti di jalan Tol Kanci-Pejagan, penggunaan beton *Inverted T* di setiap sambungan muai yang dikombinasikan dengan *sleeper* slab akan leboh cocok diterapkan.

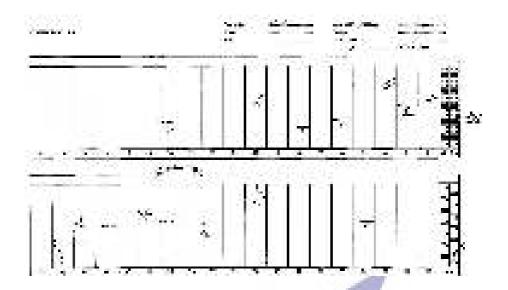

3.2.5.4. Kondisi Struktur Lapisan Perkerasan

Berdasarkan kondisi struktur yang ada menunjukkan modulus bahan lapisan tanah timbunan yang bervariasi. Hal ini memungkinkan adanya penurunan yang tidak seragam (differential settlement) yang muncul secara perlahan dan menimbulkan perbedaan tinggi antara bangunan tetap seperti dinding bangunan atas jembatan dengan oprit dan badan jalan. Gelombang diperkirakan muncul di tempat-tempat yang mempunyai nilai CBR dengan kesenjangan yang besar. Untuk mengantisipasi hal tersebut maka perlu dilakukan pengukuran garis ketinggian secara rutin. Bila ditemukan perbedaan yang dapat dilakukan upaya grouting menggunakan media yang dapat mengembang (foam) sehingga bagian yang turun akan terangkat mencapai garis ketinggian rencana.


ANALI SI S DATA JALAN BETON PRACETAK-PRATEGANG DI CI ASEM, PANTURA JAWA BARAT

4.1. Analisis Kondisi Permukaan Jalan


1) Pemetaan kondisi permukaan jalan


Gambar 25-a. Pencatatan kondisi permukaan dan *joint panel* beton pracetak Nomor JP-03, di Casem-Pantura (Juni 2011)

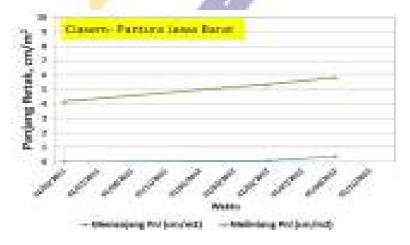
Gambar 25-b. Tipikal pencatatan kondisi permukaan dan *joint* panel beton pracetak Nomor JP-03, di Ciasem-Pantura (Agustus 2012)

Gambar 25-c. Tipikal pencatatan kondisi permukaan dan *joint panel* beton pracetak Nomor JP-10, di Casem-Pantura (Juni 2011)

Gambar 25-d. Tipikal pencatatan kondisi permukaan dan *joint* panel beton pracetak Nomor JP-10, di Çiasem-Pantura (Agustus 2012)


Pada bulan Juni 2011 dilakukan penilaian kondisi permukaan. Penilaian kondisi tersebut dilakukan setelah perkerasan beton pracetak dilalui kendaraan selama sekitar 6 bulan. Jumlah total panel 440 buah dengan dimensi 8,4 m x 2,5 m, dan tebal 20 cm. Jumlah segmen sebanyak 13 segmen, atau diberi nama JP-01 sampai dengan JP-13. Segmen antara awal sambungan panel (JP-01) dan JP-02 telah dilapis ulang dengan campuran beraspal sehingga permukaan jalan beton yang dinilai adalah mulai dari JP-03 sampai dengan JP-13. Retak melintang dalam Gambar 25-c adalah dihitung panjang retak terhadap satu segmen Joint Panel (40 x 8,5m x 2,5m). Retak sudut, retak *irregular*, dan spalling ditunjukkan dalam Gambar 25-f sampai dengan Gambar 25-u.

2) Retak melintang panel (memanjang sejajar sumbu jalan)


Retak melintang dalam pengukuran ini diukur arah lebar terhadap satu panel ukuran panjang 8,4 m dan lebar 2,5 m. Jadi retak melintang panel diartikan sebagai retak yang sejajar sumbu jalan pada satu panel yang bersangkutan. Bila retak melintang lebih dari 2,5 meter artinya retak melintang lebih dari satu garis dalam satu panel tersebut. Dalam Gambar 25-f diperlihatkan panjang

retak melintang panel per segmen terbanyak ditemukan di JP-12 dan JP-13 sepanjang (60 -- 80) m, sedang pada JP lainnya kurang dari 40 m.

Bila diakumulasikan terhadap total luas panel yang ada (jumlah panel 440 buah, luas = $440 \times 8.4 \text{ m} \times 2.5 \text{ m} = 9.240 \text{ m}$ 2, panjang retak melintang menjadi sekitar 5,8 cm/m2, sedang retak memanjang panel kurang daripada 0,5 cm/m2. Lihat Gambar 25-g menunjukkan bahwa retak melintang lebih banyak daripada retak memanjang. Retak tersebut cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut.

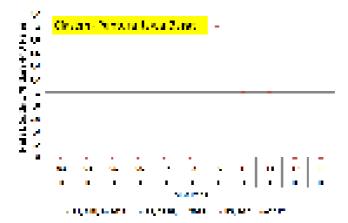
Gambar 25-e. Retak melintang per segmen (September 2012)

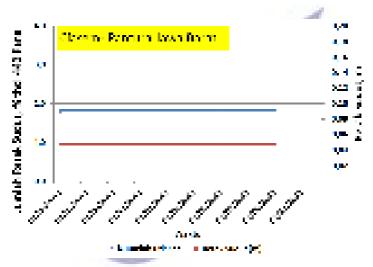
Gambar 25-f. Retak melintang dan memanjang (September 2012)

3) Retak memanjang panel (tegak lurus sumbu jalan)

Retak memanjang dalam pengukuran ini adalah sebaliknya dari tersebut dalam (4.1.2), diukur ke arah lebar terhadap satu panel ukuran panjang 8,4 m dan lebar 2,5 m. Jadi retak memanjang panel diartikan sebagai retak yang tegak lurus sumbu jalan pada satu panel yang bersangkutan. Bila retak melintang lebih dari 8,4 meter artinya retak memanjang lebih dari satu garis dalam satu panel tersebut. Dalam Gambar 25-e diperlihatkan panjang retak memanjang terbanyak ditemukan di JP-03 dan JP-05 sepanjang (5 -- 9) m, sedang pada JP lainnya kurang dari 4 m.

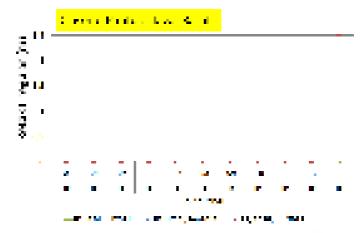
Dalam Gambar 25-f menunjukkan bahwa retak memanjang relatif sedikit daripada retak melintang.

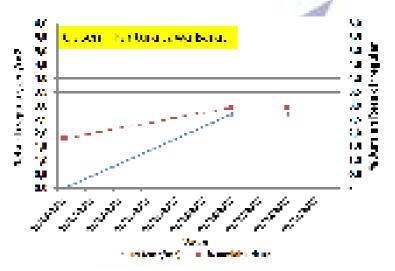

Retak tersebut cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut.


Gambar 25-g. Retak memanjang panel (September 2012)

4) Retak sudut

Retak sudut ditemukan pada JP-09, JP-10 dan JP-11, sebanyak antara 1 % dan 2 %, atau antara 4 dan 8 panel. Lihat Gambar 25-h. Retak sudut tidak berkembang seperti ditunjukkan dalam Gambar 25-i. Seluruh retak sudut sudah dilakukan perbaikan setempat. Namun untuk menjaga perkembangan selanjutnya, jenis kerusakan tersebut perlu dimonitor secata rutin.

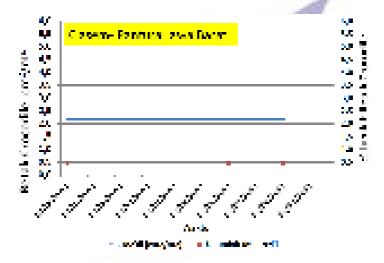

Gambar 25-h. Perkembangan retak sudut per segmen (September 2012)


Gambar 25-i. Perkembangan retak sudut (September 2012)

5) Retak irregular

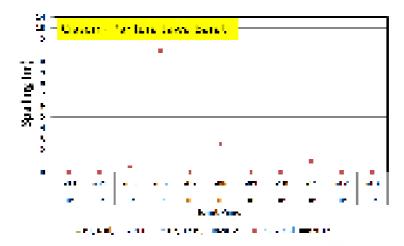
Retak irregular ditemukan hanya pada JP-13 sepanjang 2,5 m. Lihat Gambar 25-j. Retak ini berkembang sampai bulan ke 15 seperti ditunjukkan dalam Gambar 25-k Seluruh retak irregular sudah dilakukan perbaikan setempat dengan sealant tuang panas, namun untuk menjaga perkembangan selanjutnya, jenis kerusakan tersebut perlu dimonitor secata rutin.

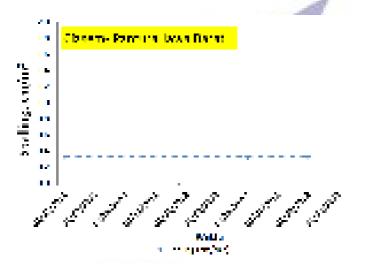

Gambar 25-j. Perkembangan Retak *Irregular* per segmen (September 2012)


Gambar 25-k. Perkembangan retak *Irregular* (September 2012)

6) Retak kulit buaya (crocodile cracks)

Retak kulit buaya ditemukan hanya pada JP-07 seluas 1 m2. Lihat Gambar 25-I. Retak ini tidak seperti ditunjukkan dalam Gambar 25-m. Seluruh retak kulit buaya telah dilakukan perbaikan setempat dengan cor setempat, namun untuk menjaga perkembangan selanjutnya, jenis kerusakan tersebut perlu dimonitor secata rutin.


Gambar 25-I. Perkebangan Retak Buaya per segmen (September 2012)

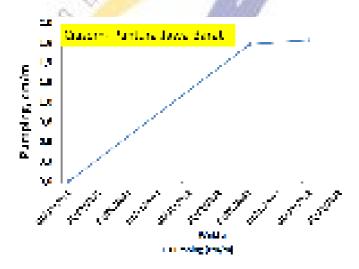

Gambar 25-m. Perkebangan retak buaya (September 2012)

7) Gompal (spalling)

Gompal ditemukan pada JP-06, dan JP-08 sepanjang antara 3 m sampai dengan 11 m., sedang di tempat lainnya relatif kecil. Lihat Gambar 25-n. Seluruh kerusakan jenis gompal telah dilakukan perbaikan setempat menggunakan mortar beton tertentu. Kerusakan ini tidak berkembang seperti ditunjukkan dalam Gambar 25-p.

Gambar 25-n. Perkembangan *spalling* per segmen (September 2012)

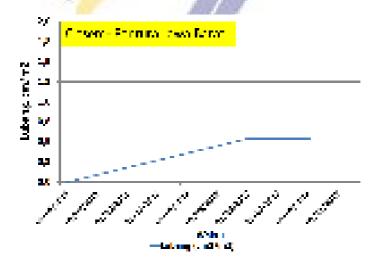
Gambar 25-o. Perkembangan spalling (September 2012)


8) Pumping

Pumping ditemukan pada JP-03 sampai JP-08 sepanjang masing-masing 8 m, dan terparah di JP-09 se[anjang 24 m Lihat Gambar 25-p. Pumping ini menunjukkan peningkatan sampai umur sekitar 25 bulan. Lihat Gambar 25-q. Perbaikan dengan grouting pernah dilaksanakan sebanyak satu kali, namun selanjutnya belum diperoleh keterangan sampai sejauh mana dilakukan pemeliharaan kerusakan ini. Secara visual, masih nampak

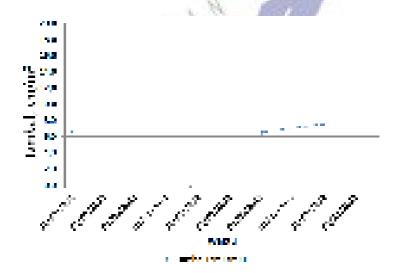
adanya rongga di bawah slab atau sambungan, terbukti pada saat kendaraan berat lewat, terlihat goyangan ujung panel dan getaran yang signifikan. Kerusakan *pumping* ini perlu setiap saat dilakukan *grouting*, dan seperti pada lokasi pemantauan lainnya (jalan tol Kanci – Pejagan dan lokasi *ujicoba* skala penuh Buntu, Jawa Tengah), perbaikan *grouting* untuk mengisi rongga di bawah panel tidak cukup dilaksanakan satu atau dua kali.

Gambar 25-p. Perkembangan pumping per segmen (September 2012)


Gambar 25-q. *Pumping* terdeteksi terus sampai umur 30 bulan (Sept.2012)

9) Lubang dan Tambalan


Kerusakan berupa lubang dengan luas sekitar $0.5~\text{m}^2$ ditemukan pad JP-11 pada lokasi retak melintang, retak memanjang dan retak sudut, kemudian dilakukan perbaikan penambalan dengan mortar beton semen menjadi seluas $2.0~\text{m}^2$. Di JP-06 sampai dengan JP-12 dilakukan pula penambalan dengan luas tambalan yang tidak terlalu besar sekitar $(0.2-1.0)~\text{m}^2$.


Gambar 25-r. Perkembangan lubang per segmen (September 2012)

Gambar 25-s. Perkembangan lubang (September 2012)

Gambar 25-t. Perkembangan tambalan per segmen (September 2012)

Gambar 25-u. Perkembangan tambalan (September 2012)

4.2. Analisis Kondisi Struktur Berdasarkan Data FWD

Hasil pengukuran lendutan dengan alat Falling Weight Deflectometer (FWD) untuk lajur lambat, lajur cepat dan lajur tengah. Data lendutan ini diambil pada Juni 2011. Dalam tabel tersebut terlihat besaran lendutan

yang terjadi dalam satuan mikron (0,001 mm) dan ketentuan untuk mengidentifikasi kemungkinan adanya rongga di bawah sambungan berdasarkan *load transfer efficiency* (LTE), defleksi maksimum pada ujung panel dan di tengah panel. Indikator adanya rongga dapat dilihat pada kolom terakhir yaitu menggunakan symbol y. Makin banyak jumlah symbol y diindikasikan makin kuat adanya rongga di bawah panel. Untuk kondisi saat ini (September 2012) mungkin berubah karena sudah dilakukan *grouting* sebanyak satu kali.

Tabel 10 Analisis defleksi pada lajur lambat, lajut cepat dan lajur tengah

Lajur Lambat

No ID	No JP	App, mikron		Leave, mikron		Diff Defl,	Mean;	LTE.TAI:	Defl,	
		D1	D3 (on <i>Leave</i> edge)	D1	D1.CP mikron	D1-D3; Maks 0,08 mm	Maks 0,57 mm	D3/D1; Min=0,6	CP, TAI,	Indikasi Voids
ID2-	JP3	549,80	434,40	31,35	29,95	12	0,49	0,79	0,13	Υ
ID5-	JP4	523,85	376,05	13,70	26,25	15	0,45	0,72	0,13	у
ID8-	JP5	565,70	429,00	30,55	22,70	14	0,50	0,76	0,12	у
ID12-	JP6	128,35	112,50	8,05	76,00	02	0,12	0,88	0,38	
ID15-	JP7	122,85	113,50	0,90	36,90	01	0,12	0,92	0,44	у
ID18-	JP8	213,45	197,10	7,90	29,55	02	0,21	0,92	0,53	у
ID21-	JP9	105,15	89,55	39,20	B5,65	02	0,10	0,85	0,29	
ID24-	JP10	82,00	68,75	39,80	27,70	01	0,08	0,84	0,33	
ID27-	JP11	94,10	76,90	21,85	35,35	02	0,09	0,82	0,29	
ID30-	JP12	103,00	92,10	1,10		01	0,10	0,89		

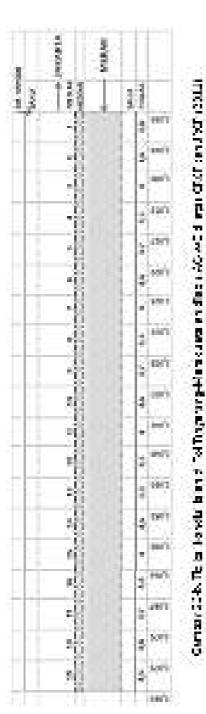
Lajur Cepat

	_									
No ID	No JP		mikron D2 (on Leave Edge)	Leave, mikron	D1.CP mikron	Diff Defl, D1-D2; Maks 0,08 mm	Mean; Maks 0,57mm	LTE.tai; D2/D1; Min=0,6	Defl, CP, TAI, mm	Indikasi Voids
ID2-	JP3	430,20	127,50 242,55 116,15 0,30 0		0,28	0,30	0,12	уу		
ID5-	JP4	378,40	62,50	587,85	96,50	0,32	0,22	0,17	0,10	уу
ID8-	JP5	486,50	124,90	365,05	105,90	0,36	0,31	0,26	0,11	уу
ID12-	JP6	354,90	67,30	193	71,35	0,29	0,21	0,19	0,07	уу
ID15-	JP7	225,80	97,65	261,75	121,25	0,13	0,16	0,43	0,12	уу
ID18-	JP8	341,15	85,00	216,15	84,10	0,26	0,21	0,25	0,08	уу
ID21-	JP9	266,75	103,40	163,7	122,15	0,16	0,19	0,39	0,12	уу
ID24-	JP10	195,20	133,90	215,95	106,50	0,06	0,16	0,69	0,11	
ID27-	JP11	252,40	73,75	187,65	104,80	0,18	0,16	0,29	0,10	уу

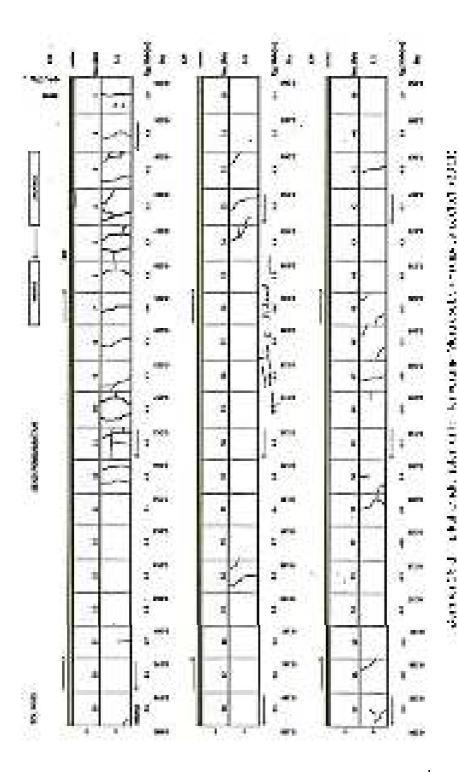
	No JP	App, mikron		Leave, mikron	D1.CP	Diff Defl, D1-D2:	Mean;	LTE.tai;	Defl. CP.	Indikaci
No ID		D1	D2 (on Leave Edge)	D1	mikron	Maks 0,08 mm	Maks 0,57mm	D2/D1; Min=0,6	TAI, mm	Voids
ID30-	JP12	287,65	73,85	234,05		0,21	0,18	0,26		уу

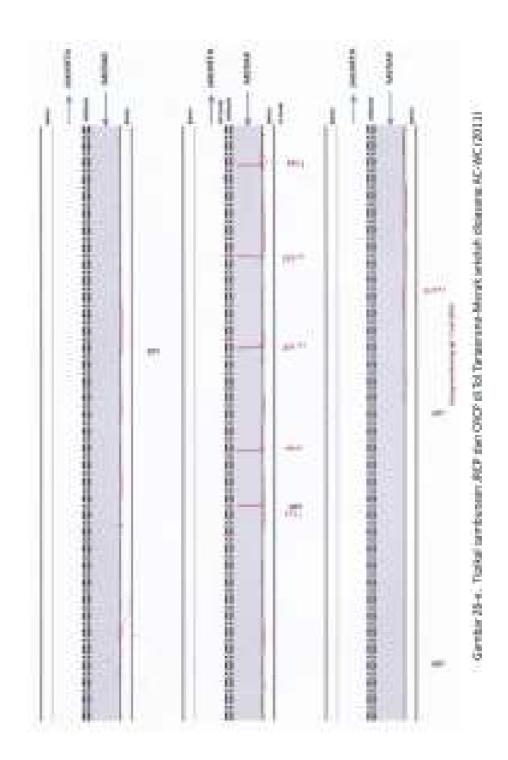
Lajur Tengah

,	Lajur rengan												
No	No JP	App,	mikron	Leave,	D1.CP	Diff Defl,	Mean;	LTE.tai;	Defl,	D0 pag	da Tiga	Void	Indikasi
ID				mikron	mikron	D1-D2;	Maks	D2/D1;	CP, TAI,	Vai	riasi	Detct'n:	Voids
						Maks 0,08	0,57	Min=	mm	Be	ban	Dlv-Dap,	
		D1	D2 at	D1		mm	mm	0,6		Dap	Dlv	Maks	
			Leave							(mic)	(mic)	0,05 mic	
			Edge										
ID2-	JP3	330,10	106,90	181,20	142,70	0,22	0,22	0,32	0,14	0	0	0	уу
ID5-	JP4	331,30	164,60	261,50	132,70	0,17	0,25	0,50	0,13	20,5	0,0	21	уу
ID8-	JP5	372,10	202,70	364,60	161,80	0,17	0,29	0,54	0,16	43,8	3,8	40	уу
ID12-	JP6	199,80	180,80	404,70	273,20	0,02	0,19	0,90	0,27	103,5	73	31	
ID15-	JP7	161,00	143,70	361,20	356,70	0,02	0,15	0,89	0,36	4,1	0	4	
ID18-	JP8	285,10	266,50	335,00	317,20	0,02	0,28	0,93	0,32	21,8	6,4	15	
ID21-	JP9	118,30	98,10	207,20	199,00	0,02	0,11	0,83	0,20	0	0	0	
ID24-	JP10	128,20	117,10	197,20	244,20	0,01	0,12	0,91	0,24	0	0	0	
ID27-	JP11	133,40	115,80	355,60	254,90	0,02	0,12	0,87	0,25	14	14	0	
ID30-	JP12	107,80	90,50	172,70	303,50	0,02	0,10	0,84	0,30	0	0	0	

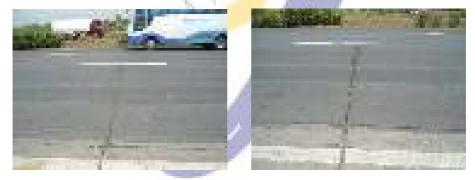

ANALISIS DATA JALAN BETON BERTULANG MENERUS (CRCP) DI JALAN TOL TANGERANG-MERAK

5.1. Lokasi Jalan


Survai kondisi jalan beton bertulang menerus atau continuous reinforced concrete pavement (CRCP) dan jalan beton bertulang bersambung (JRCP) baru yang dilakukan selama satu tahun (2012) dapat menunjukkan perkembangan kondisi permukaan yang terukur. Pelaksanaan CRCP sepanjang 1000 meter, sedangkan JRCP masing-maisng sebanyak 2 segmen dengan panjang masing-masing 12 meter dan 2 segmen lainnya sepanjang masing-masing 24 meter. Permukaan CRCP dan JRCP sudah dilapis ulang dengan Laston. Umur Laston sekitar 9 bulan (Desember 2012). Lokasi CRCP dan JRCP terletak pada Km 44+350 (Jkt) s/d Km 45+375 (Jkt) arah ke Merak.


Gambar 26-a. Lokasi CRCP dan JRCP di tol Tangerang-Merak Km 44+350 s/d Km 45+375 (Jkt)

Rank Offi George and Schmidter vol (1900) 25, ednil (1)


Pusat Penelitian dan Pengembangan Jalan dan Jembatan

5.2. Analisis Kondisi Permukaan Jalan

Secara visual, belum terlihat adanya retak refleksi dari CRCP dan JRCP ke permukaan beton aspal (Gambar 26-a dan Gambar 26-b), kecuali pada sambungan melintang antara CRCP dengan JRCP dan antara JRCP dengan JRCP, lihat Gambar 26-e dan Gambar 26-f. Sebagai gambaran, jenis kerusakan retak yang ada hanya pada sambungan antara bahu jalan yang di cor di tempat dengan jalan CRCP. Panjang retak sekitar yang diukur pada survai tanggal 07-Jul-2012, retak memanjang pada sambungan beton dengan bahu sepanjang 218 meter, dan hasil survai tanggal 07-Sep-2012 tercatat retak memanjang pada sambungan beton dengan bahu sepanjang 257 meter. Hasil survai akhir November 2012 tercatat retak memanjang pada sambungan beton dengan bahu sepanjang 292 meter. Lihat Gambar 26-e.

Retak melintang terlihat pada setiap sambungan antara CRCP dengan JRCP. Retak melintang tersebut ada pada jalur lambat, masing-masing pada Sta 1+254, Sta 1+266, Sta 1+278, Sta 1+302, dan Sta 1+327.

Gambar 26-f. Sambungan antara CRCP dan JRCP

Mesin Pembentuk Perkerasan Beton Semen

Mesin pembentuk perkerasan beton terdiri atas 2 jenis yaitu jenis mesin untuk acuan tetap (*fixed form*) dan mesin untuk acuan gelincir atau acuan bergerak (*slip form*).

6.1. Mesin Penghampar Beton Semen Jenis Acuan Tetap (fixed form)

6.1.1. Keuntungan Penggunaan Acuan Tetap

Dinding tepi sebagai perancah pada penghampar beton jenis acuan tetap, digunakan untuk menahan beton segar tetap di tempat pada ketinggian yang tepat sampai beton mengeras. Bagian atas acuan ini juga dapat berfungsi sebagai dudukan untuk menempatkan peralatan perata dan pekerjaan penyelesaian akhir. Penghampar beton acuan tetap cocok untuk pekerjaan yang relatif kecil, untuk bentuk perkerasan dengan geometri yang rumit, atau untuk lebar perkerasan yang bervariasi, walaupun dapat digunakan pula untuk pekerjaan besar.

Keuntungan penggunaan penghampar beton acuan tetap menurut *American Concrete Pavement Association* (ACPA, 1995). adalah sebagai berikut:

 Toleransi dan kebebasan samping yang ketat. Kerb yang ada dapat digunakan sebagai dinding acuan.

- Acuan dapat ditempatkan di hampir semua bentuk geometri perkerasan, yang memungkinkan untuk mengikuti bentuk dan lebar perkerasan yang berubah, tikungan, dan bentuk lainnya.
- Acuan tetap dapat digunakan pada konstruksi bertahap, berfungsi untuk mengarahkan arus lalu lintas, atau untuk pelaksanaan penghamparan beton di persimpangan.
- Biaya peralatan dan mobilisasi relatif murah dibandingkan dengan acuan bergerak (*slip form*).

6.1.2. Peralatan Penghampar Beton Jenis Acuan Tetap

Peralatan untuk menghampar beton menggunakan acuan tetap meliputi alat-alat sebagai berikut:

a) Mesin Penghampar dan Penempa (Spreading and Finishing Machines)
 Jenis mesin penghampar harus diatur agar dapat memperkecil kemungkinan segregasi campuran beton. Alat penempa (finishing)

machines) harus dilengkapi dengan tranverse screeds yang dapat bergerak bolak-balik (oscillating type) atau alat lain yang serupa.

b) Vibrator (Penggetar)

Vibrator, alat untuk menggetarkan seluruh lebar perkerasan beton, dapat berupa surface pan type atau internal type dengan tabung celup (immersed tube) atau multiple spuds. Vibrator dapat di pasang pada mesin penghampar atau alat penempa. Vibrator tidak boleh menyentuh sambungan, load transfer devices, subgrade dan acuan (form) tepi. Frekuensi vibrator surface pan tidak boleh kurang dari 3500 impuls per menit (58 Hz). Frekuensi internal vibrator tidak boleh kurang dari 5000 impuls per menit (83 Hz) untuk vibrator tabung dan tidak kurang dari 7000 impuls per menit (117 Hz) untuk spud vibrator.

Spud vibrator, dapat dipasang pada mesin penghampar (*spreader*) atau alat penempa (*finishing*), dengan frekwensi tidak boleh kurang dari 3500 impuls per menit (58 Hz). Di lokasi dekat acuan dapat dioperasikan dengan tangan.

c) Acuan tepi

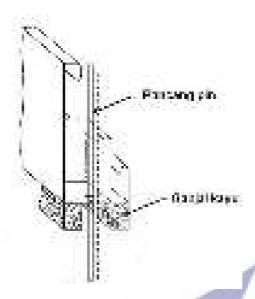
Penghampar acuan tetap menggunakan serangkaian cetakan yang dapat distel atau dirangkai untuk membentuk cetakan suatu perkerasan yang kaku. Penyetelan cetakan pada acuan tetap menjadi suatu proses yang harus dilaksanakan secara hati-hati sebelum penempatan beton segar. Penyetelan cukup mudah dilakukan sebelum beton segar ditempatkan. Penyetelan setelah beton segar ditempatkan merupakan hal tidak mungkin dilakukan karena akan mendapatkan kesulitan. Penyetelan ini penting karena bagian atas cetakan akan menjadi suatu rel untuk melaksanakan penyelesaian akhir (finishing) menggunakan peralatan lainnya.

Pedoman umum untuk merangkai acuan tetap adalah sebagai berikut:

- 1) Acuan ini harus ditempatkan pada dasar atau fondasi agregat sesuai dengan bentuk yang diinginkan.
- 2) Bahan acuan sebagai cetakan dapat dibuat dari pelat baja dan rangka baja yang dilas atau papan dan rangka kayu yang diperkuat. Untuk pekerjaan bersekala besar, harus digunakan acuan pelat baja tebal minimum 5 mm dengan panjang 3 m yang disambung dan diperkuat dengann pen sehingga kaku (Gambar 27-a), sedangkan untuk pekerjaan kecil dapat menggunakan papan kayu tebal minimum 3 cm (Gambar 27-b).

Gambar 27-a. Acuan tetap siap di set

Gambar 27-b. Acuan tetap dari kayu untuk pekerjaan kecil


- Kedalaman cetakan harus sama dengan tebal slab. Dengan cara ini elevasi slab beton dan bagian tepinya dapat dikontrol dengan ketat.
- 4) Dinding cetakan harus memiliki lebar dasar flens (flange braces) yang cukup untuk menjaga kestabilan. Jika tidak stabil, mungkin bisa bergeser atau berubah pada saat beton segar ditempatkan yang akan membebaninya.
- 5) Batang flens (flange braces) harus dilebihkan keluar dari dasar tidak kurang dari 2/3 tinggi acuan. Bagian dasar cetakan harus melekat pada dasar atau fondasi dengan cara dipasak pada setiap jarak (1 2) m, untuk mencegah kemungkinan bagian dasar bergerak dari tempatnya.
- 6) Bagian atas cetakan harus lurus dan rata. Kerataan bagian atas tidak boleh berbeda lebih dari 3 mm untuk setiap panjang 3 m cetakan, dan pada kaki tegaknya tidak boleh lebih dari 6 mm. Acuan ini harus dilengkapi juga dengan pengunci di ujung-ujung bagian yang bersambungan.
- 7) Bagian ujung cetakan harus terkunci bersama cetakan lainnya sehingga kaku, untuk mencegah agar cetakan tidak terpisah ketika beton segar ditempatkan.
- 8) Acuan harus dilengkapi dengan sarana yang memadai untuk keperluan pemasangan, sehingga bila telah terpasang acuan tersebut dapat menahan benturan dan getaran dari alat pemadat dan pembentuk, tanpa adanya lentingan atau penurunan.

- 9) Acuan dan alat pengendali elevasi jenis kawat atau lainnya harus dipasang di muka yang akan dicor beton. Acuan harus dipasang pada tempatnya menggunakan sekurang-kurangnya 3 paku untuk setiap 3 m bagian panjang acuan. Paku pemancang (pin) ini harus diletakkan di setiap sisi sambungan. Lihat Gambar 27- c.
- 10) Dalam Gambar 27-d ditunjukkan tipikal acuan tepi. Kedalaman acuan tepi harus sama dengan ketebalan perkerasan beton yang dibutuhkan. Acuan dengan kedalaman lebih besar atau kurang daripada ketebalan perkerasan beton yang diperlukan dapat digunakan jika perbedaan antara kedalaman form dan kedalaman perkerasan desain tidak lebih besar dari 5 cm (2 inci). Penggunaannya adalah sebagai berikut:
 - Acuan dengan kedalaman lebih besar dari ketebalan tepi perkerasan dapat digunakan jika direncanakan untuk membentuk parit tepi.
 - Acuan dengan kedalaman kurang dari ketebalan tepi perkerasan harus disesuaikan dengan ketebalan tepi yang dibutuhkan dengan aman, yaitu dengan memasang pelat logam atau kayu ganjal (shims) di bagian yang disetujui sesuai dengan lebar dan panjang dasar acuan, seperti yang ditunjukkan pada Gambar 27- d. Gunakan ganjal kayu di bawah acuan yang belum terisi agar dicapai ketinggian perkerasn beton yang direncanakan.

Gambar 27-c. Pemancangan Pin Menggunakan Jackhammer dan Pin yang Sudah Terpancang

Gambar 27-d. Acuan tepi

- 11) Acuan harus kokoh dan tidak goyah. Toleransi acuan dari garis yang sebenarnya maksimum 5 mm. Alat pengendali elevasi harus dipasang dengan toleransi ± 10 mm terhadap rencana elevasi.
- 12) Permukaan cetakan yang berhubungan dengan beton segar harus dibersihkan dan diminyaki sebelum digunakan. Permukaan yang kotor dan tidak diminyaki akan menyebabkan cacat permukaan di sisi slab dan dapat menempel pada slab selama pembongkaran acuan.
- 13) Lengkungan atau tikungan dengan jari-jari kurang dari 30 m harus menggunakan cetakan yang fleksibel, misalnya kayu, atau pelat logam yang dirangkai dengan rangka dan dilas melengkung. Untuk jari-jari tikungan lebih dari 30 m, cetakan panjang 3 m yang terbuat dari baja dapat disusun sesuai dengan bentuk lengkungan yang diperlukan. Lihat Gambar 27- e.

Gambar 27-e. Foto lengkungan/belokan jalan

- 14) Acuan samping terbuat dari baja harus digunakan untuk membentuk lidah alur (key-way) sepanjang sambungan memanjang.
- 15) Bagian atas acuan harus tetap bersih dan gerakan mesin di atas acuan harus dijaga tidak menyebabkan goyah pada acuan yang akan mempengaruhi presisi akhir.

6.1.3. Penempatan dan pemadatan beton pada cetakan

Berikut ini pedoman umum bila menggunakan mesin penghampar beton jenis acuan tetap:

- a) Konsistensi beton (slump) harus diukur sesuai dengan SNI 1972:
 2008. Rentang slump adalah 50 75 mm untuk jalan umum, dan antara 40 60 mm untuk jalan tol. Toleransi yang diijinkan untuk campuran beton manapun adalah ± 13 mm.
- b) Rasio air-semen (W/C ratio) untuk agregat permukaan kering, ditentukan berdasarkan ketentuan kekuatan tetapi tidak boleh melampaui 0,48 terhadap berat.
- c) Pemadatan dengan vibrator tidak boleh menyentuh langsung perlengkapan sambungan atau sisi acuan. Vibrator tidak boleh digunakan lebih dari 5 detik pada setiap tempat.

6.1.4. Batang penempa (*screed*)

Batang penempa atau screed pada acuan tetap adalah bervariasi dalam ukuran panjang dan lebar serta dapat dibuat secara sederhana. Beberapa jenis screed khusus adalah sebagai berikut:

- Manual screed terdiri atas pipa baja atau baja profil persegi yang lurus dan datar dengan gagang yang panjang, untuk mendorong beton segar sesuai dengan ketinggian yang diinginkan.
- Penempa berputar (*roller screed/ paver*) (Gambar 27-f sampai dengan Gambar 27-h), terdiri atas tabung baja yang berputar hingga 250 rpm dalam arah yang berlawanan dari gerakan penghamparan beton segar. Tabung menggilas beton segar dan mendorong kelebihan beton segar ke depan oleh aksi gerakan ke depan. Tabung penggilas ini dapat dilengkapi dengan sistem getaran kecil, dan dapat dipasang pada satu unit alat penghampar beton jenis acuan tetap. (Gambar 27-h). *Tie bar* dipasang secara manual (Gambar 27-i).

Gambar 27-f. Roller screed

Gambar 27-g. *Roller screed* sedang beroperasi

Gambar 27-h. Self-propelled roller screed

Gambar 27-i. Tie bar dipasang manual

Penempa jenis rangka batang (truss screed) (Gambar 27-j), terdiri atas sebuah pisau baja atau aluminium yang dipasang pada bingkai rangka batang. Perata jenis rangka batang dapat menjangkau sampai sekitar 22,9 m. Biasanya, perata jenis rangka batang dipasang alat penggetar oleh suatu mesin kecil atau dengan kompresor. Lihat Gambar 27-k).

Gambar 27-j. Vibrating screed

Gambar 27-k. A Clary or Roller Screed

Penggilas tabung bergerak (*traversing roller tube paver*), (Gambar 27-I), terdiri atas penggilas dan perata tabung bergerak yang dipasang pada bingkai rangka batang. Perata jenis ini bergerak melintas dari satu ujung ke ujung lain, dengan mesin penggerak. Biasanya, perata ini meratakan dan selesai dalam satu lintasan saja. Bingkai rangka batang dilengkapi dengan pengatur permukaan berbentuk datar (*flat*), lengkungan parabola, punggung jalan (*crown*), bentuk super elevasi, dan bentuk lancip (*taper*).

Gambar 27-1. Traversing roller tube paver

Dalam Gambar 27-m diilustrasikan pekerjaan beton cor di tempat di Tangerang – Merak, menggunakan CRCP dan JRCP. Dalam Gambar 27-n diperlihatkan secara sederhana pekerjaan penghamparan beton tanpa tulangan.

Gambar 27-m. Sistem acuan tetap pada pelaksanaan JRCP dan CRCP di Jalan Tol Tangerang-Merak

Gambar 27-n. *Apollo Fixed Form Concrete Paver* di India (http://www.youtube.com/watch?v=ms0mcTxMAHo)

6.1.5. Pemadatan

Ada tiga pilihan cara pemadatan untuk penggunaan acuan tetap:

- 1) Bila tidak dilakukan pemadatan dengan getaran (*vibrator*), hal ini akan ada risiko meninggalkan kekosongan besar dalam masa beton segar, yang mengakibatkan struktur seperti sarang lebah (*honey-comb*).
- 2) Vibrator yang dioperasikan dengan tangan (*Hand-operated vibrators* atau dikenal dengan nama *vibrator spud*) adalah batang panjang yang bergetar dan dioperasikan oleh kompresor udara atau motor listrik dengan daya kecil sekitar (1,5 -- 3,0) kW, dan dengan kekuatan sekitar (2 -- 4) tenaga kuda. (Lihat Gambar 27- o).
- 3) Penempa bergetar (*screed vibration*), adalah peralatan seperti rangka batang yang bergetar yang akan menggetarkan beton segar yang sudah dituangkan dan ditempatkan. Getaran biasanya dioperasikan dengan tenaga mekanis atau kompresor udara.

6.1.6. Penyelesaian Akhir (Finishing)

Pada penghampar jenis acuan tetap, penyelesaian akhir biasanya dilakukan dengan alat-alat tangan atau dengan mesin. Pada umumnya setelah beton segar diratakan, dihaluskan dengan alat pelepa mengambang (floating) yang digerakkan dengan menggeser-geser di atas permukaan beton segar (Gambar 27-p dan Gambar 27-r). Untuk menghilangkan tonjolan yang tersisa dikontrol dengan straightedge (Gambar 27-q dan Gambar 27-r), untuk membenamkan partikel agregat yang besar. Terakhir adalah texturing menggunakan alat tining (Gambar 27-s) dengan tangan atau alat bersekala besar menggunakan rangka batang yang dilengkapi alat tining dan digerakan secara mekanis.

Gambar 27-p. Pelepa (floating)

Gambar 27-q. Straightedge

Gambar 27-r. Pelepa (floating) sedang dioperasikan

Gambar 27-s. *Tining* secara manual

Perawatan beton yang telah dicetak dalam acuan tetap dapat menggunakan curing basah dan curing tertutup. Curing basah biasanya terbatas pada pekerjaan kecil, sementara curing tertutup dapat digunakan pada setiap ukuran permukaan beton. Curing tertutup dapat didistribusikan menggunakan mesin penyemprot kompon yang mengangkang di atas permukaan beton basah, atau menggunakan penyemprot kompon secara manual.

6.1.7. Pembongkaran acuan

Acuan tetap dapat dibongkar segera setelah antara 8 jam dan 12 jam sejak penempatan beton. Bagian yang keropos harus dibersihkan dan diperbaiki segera menggunakan campuran 1 bagian semen dan 2 bagian pasir halus, dalam waktu 24 jam.

6.2. Mesin Penghampar Beton Jenis Acuan Bergerak (slip-form)

6.2.1. Kenapa memilih acuan bergerak

Di banyak kegiatan pekerjaan konstruksi, kondisi cuaca di lokasi selama operasi memerlukan pertimbangan penting. Pada temperatur rendah atau cuaca dingin, pengerasan beton adalah paling lambat, dan dapat menunda pembongkaran acuan bekisting tersebut. Cuaca dingin juga dapat mempengaruhi kekuatan beton. Dalam cuaca panas, beton rentan terhadap penurunan *slump* yang cepat, kadar udara berkurang, pengerasan dini, dan retak termal. Dengan acuan bergerak, masalah tersebut semaksimal mungkin dapat dihindari.

Acuan bergerak bisa lebih cepat dan lebih ekonomis daripada acuan konvensional, dan ini sering menjadi alasan kenapa digunakan acuan bergerak.

6.2.2. State of the art

Sekitar tahun 1950, penghampar perkerasan beton semen jenis acuan bergerak merupakan hal yang baru di Amerika. Didorong oleh sejumlah faktor-termasuk kebutuhan untuk tenaga kerja yang lebih rendah, ekonomi, dan dorongan yang diberikan oleh Sistem Interstate Highway pada konstruksi perkerasan, acuan bergerak telah berkembang menjadi sebuah metode yang diterima secara luas. Kecepatan perkembangan ekonomi dapat diperoleh dari perkerasan beton menggunakan acuan bergerak, dan telah menyebarkan penggunaan alat tersebut di 25 negara. Tidak diragukan lagi saat ini (tahun 2012) penggunaannya menjadi biasa di hampir setiap negara.

Kapasitas mesin acuan bergerak yaitu sekitar 550 m²/jam (600 *yards* persegi per jam). Kerataan permukaan perkerasan beton dengan acuan bergerak ini sangat baik. Hasil penelitian pada perkerasan beton tanpa tulangan yang ditempatkan pada pondasi bawah tanah-semen di Colorado mengindikasikan nilai ketidakrataan yang baik, yaitu 1,26 m/km (80 inci per mil) diukur dengan alat *roughometer*.

Perkerasan beton pertama dibangun dengan perkuatan baja secara konvensional menggunakan acuan bergerak dilakukan pada tahun 1958 di Colorado. Pada tahun 1962 perkerasan beton bertulang menerus pertama menggunakan teknik acuan bergerak dibangun di Rhode Island. (PUBLICATION #C640385, Copyright © 1964, The Aberdeen Group, All rights reserved).

6.2.3. Keuntungan penggunaan acuan bergerak

Beberapa keuntungan penggunaan acuan bergerak untuk pekerjaan beton adalah sebagai berikut:

- Selama pekerjaan berlangsung tidak memerlukan acuan tepi slab.
- Kontrol garis ketinggian dan alinyemen menggunakan *string* diikuti dengan sensor elektronik yang dipasang pada mesin penghampar.
- Karyawan yang mengoperasikan mesin atau beberapa mesin adalah tunggal, untuk menempatan dan menyebarkan beton, membentuk, memadatkan, dan *finishing*.
- Peralatan bekerja sendiri untuk memasang batang dowel dan menyelipkan batang pengikat yang panjang.
- Beton biasanya diangkut dalam *dump truck* dengan *slump* yang relatif sangat rendah, biasanya 25 mm (1 inci).
- Beton ditempatkan langsung di dasar hamparan di depan alat penghampar atau pada konveyor yang sampai ke alat penghampar
- Acuan bergerak menempa dan memadatkan beton
- Penyelesaian akhir minimal memerlukan bantuan tangan untuk menghilangkan benjolan yang tidak diperlukan.
- Texturing otomatis atau manual menggunakan tines baja untuk membentuk alur melintang pada perkerasan.
- Ukuran *tines* adalah lebar antara 4 mm ($^{1}/_{8}$ in.) dan 5 mm ($^{3}/_{16}$ in.), kedalaman 5 mm ($^{3}/_{16}$ in.).
- *Grooving* melintang dengan gergaji pemotong dapat dilakukan setelah beton mengeras.
- Waktu pengaturan awal acuan bergerak biasanya lebih lama daripada yang diperlukan untuk acuan tetap yang konvensional, tapi begitu

sistem beroperasi, waktu penyelesaian *dapat* dikurangi secara signifikan.

6.2.4. Jenis-jenis alat penghampar acuan bergerak

Acuan bergerak (*slipform*) adalah alat untuk menempatkan beton segar secara menerus dalam sisi cetakan atau acuan yang bergerak pada laju yang ditetapkan. Cetakan tidak perlu dipindahkan karena tepi cetakan bergerak secara mekanis menggelincir mencetak beton segar dan membentuk ukuran yang sesuai dengan rancangan, dan dimensinya tetap setelah acuan bergerak meninggalkan *slab* yang sudah terbentuk menjadi slab. Teknik operasionalnya adalah bekisting bergerak mengekstrusi beton segar secara simultan termasuk penyelesaian akhir (*finishing*). Proses ekstrusi beton segar ini berkesinambungan sehingga dapat menghemat waktu dalam pelaksanaan lapangan.

Acuan bergerak dibuat khusus untuk membuat profil beton yang diperlukan. Untuk menggerakan secara vertikal, digunakan sistem jacking hidrolik. Selama penuangan berlangsung, bekisting didukung oleh anjungan acuan bergerak dan dapat dinaik-turunkan. Tingkat penuangan beton segar ditentukan oleh waktu yang dibutuhkan untuk menambah baja tulangan, dan waktu pengerasan (setting) beton.

Mesin penghampar beton acuan bergerak, digunakan dalam membentuk perkerasan beton di atas dasar yang akan diperkeras. Acuan atau bekisting terpasang pada mesin penghampar dan bergerak secara mekanis memproses beton segar yang ditempatkan di depan mesin penghampar. Mesin bekerja membentuk, memadatkan, menempa (screeds) dan menyelesaikan beton secara menerus dalam satu operasi. Alat ini membutuhkan suatu koordinasi yang erat antara penempatan beton segar dan laju pergerakan mesin tersebut. Mesin khusus ini tersedia untuk membuat median beton (median barriers), atau kerb beton, saluran tepi, atau kombinasinya. Lihat Lihat Gambar 28-a sampai dengan Gambar 28-e.

Mesin perkerasan beton harus merupakan satu unit mesin yang mempunyai fungsi menghampar, meratakan, memadatkan dan membentuk perkerasan sekaligus memberi arah dan mengatur elevasi sesuai dengan kebutuhan dalam sekali gerak maju.

Jenis mesin acuan bergerak (*slipform paver*) mempunyai lebar minimum 4,0 m yang bertumpu pada 4 roda kelabang (*crawler track*), dilengkapi sensor arah gerak (*steering sensors*), sensor elevasi (*level control sensors*) masingmasing di depan dan di belakang pada kedua sisi, serta sensor kelandaian – kemiringan (*slope sensor*) yang seluruhnya dikendalikan dengan komputer (*computerized control*). Secara umum alat ini dilengkapi dengan:

- gurdi (auger) berbentuk spiral yang dapat mendorong-putar menyebarkan adukan beton secara merata ke seluruh bagian dari lebar perkerasan;
- batang penempa (screed) yang mengatur menempa beton masuk ke dalam cetakan (mold);
- batang vibrator dengan jumlah yang cukup untuk menjamin keseragaman dan konsolidasi/ pemadatan seluruh campuran beton, yang ditempatkan selebar mold dengan frekuensi 160 – 200 Hertz dan kedudukannya harus lentur agar tetap berfungsi walaupun harus menyentuh tulangan;
- cetakan pembentuk atau mold (slipform pan / finishing pan) yaitu alat yang terbuat dari baja berkualitas sangat tinggi, membentuk permukaan perkerasan dengan tidak terseret, dan harus menjamin agar beton menghasilkan beton yang padat;
- penempa mengambang (*super smoother / float pan finisher*), yaitu penempa akhir yang menghaluskan, meratakan permukaan akhir perkerasan dan bergerak secara bolak-balik atau osilasi (*oscilation*);
- penyisip batang pengikat (*tie bar inserter*) secara otomatis pada jarak tertentu menempatkan *tie bar* pada sambungan memanjang
- penyisip ruji (dowel inserter) untuk menyisipkan dowel secara otomatis ke dalam perkerasan beton yang sedang dalam proses penyebaran pemadatan beton pada interval jarak yang diinginkan dan sejajar dengan arah pergerakan mesin.

Gambar 28-a. Acuan bergerak untuk perkerasan jalan beton

Gambar 28-b. Acuan bergerak untuk perkerasan jalan beton ukuran sedang

Gambar 28-c. Acu<mark>an</mark> bergerak untuk pagar pengaman

Gambar 28-d. Acuan bergerak untuk separator

Gambar 28-e. Acuan bergerak untuk parapet

6.2.5. Alat penghampar untuk perkerasan beton semen jenis acuan bergerak

Penghamparan beton dengan acuan bergerak dilakukan menggunakan mesin yang maju dan bergerak sendiri pada suatu jalur yang umumnya dikenal sebagai mesin penghampar.

Mesin di baris pertama adalah untuk yang menempatkan beton dan mesin ini kadang-kadang disebut sebagai penyebar. Mesin ini menerima campuran beton dari kendaraan pengirim dan menyebarkan beton di depan mesin kedua yang merupakan penghampar acuan-bergerak. Kadangkala mesin pertama dihilangkan jika beton dapat disimpan langsung di depan acuan bergerak dari unit pengiriman beton atau jika beton dipasang di depan penghampar beton acuan bergerak.

Penghampar acuan bergerak menyebarkan beton secara seragam dengan suatu auger, memadatkan beton dengan vibrator spud, dan menempa beton pada elevasi yang sesuai, mengisi beton ke dalam cetakan yang membentuk perkerasan beton dalam konfigurasi geometris yang tepat. Beberapa jenis penghampar beton acuan bergerak juga mengunakan batang pemadat (*tamping bar*). Batang pemadat melesakkan agregat besar menjadi rata untuk mencegah cetakan tersangkut agregat dan menyebabkan robekan pada bagian atas slab.

Mesin ketiga adalah tabung mengambang (*tube float*). Mesin ini menghaluskan bagian atas perkerasan dan menyeret tabung aluminium yang dipasang miring di depan dan di belakang bagian atas perkerasan. Mesin ini kadang-kadang dihilangkan bila dipasang tabung otomatis (*auto float*) di belakang mesin acuan bergerak. Tabung tersebut secara otomatis melakukan penghalusan di atas perkerasan dengan berosilasi dalam gerakan maju dan mundur untuk menghaluskan permukaan perkerasan beton

Mesin terakhir adalah kombinasi alat *tining* (alat pembuat tekstur) dan perawatan beton. Mesin ini membuat *tining* di atas perkerasan dengan sisir logam yang secara otomatis digeser di atas perkerasan. Mesin ini digunakan pula untuk menyemprot curing kompon di atas perkerasan beton. Kadangkadang curing kedua diperlukan jika *tine/curing* pertama tidak dapat melakukan operasi *curing* secara tepat waktu. Baik tabung mengapung atau

mesin tine/curing juga digunakan untuk membuat tekstur, seperti goni atau tekstur karpet yang ditarik setelah semua finishing selesai dan sebelum pembuatan tekstur dilakukan.

Penghampar beton acuan bergerak meliputi berbagai kombinasi semua atau beberapa komponen berikut: penyebar auger, vibrator spud, Screed berosilasi, screed clary, tamping bar (tamping rod), dan pan mengapung (floating pan). Pemghampar beton jenis acuan bergerak ditunjukkan pada Gambar 28-f.

Penghampar acuan bergerak dilengkapi untuk menyebarkan beton secara seragam dan memotong beton segar dan meratakan ke bagian yang dibutuhkan, menggunakan pendorong, baik berupa pisau bolak balik, konveyor sekrup (auger), atau ban berjalan, tanpa kehilangan tarikan. Penghampar beton acuan bergerak dengan dua auger ditunjukkan pada Gambar 28-g.

Gambar 28-f. Acuan bergerak dengan satu auger

Gambar 28-g. Acuan bergerak dengan dua auger

Sebuah mesin penghampar dengan dua trek dikemudikan dengan memvariasikan kecepatan trek dari satu sisi ke sisi lain. Mesin yang lebih besar dengan empat trek, dua trek di setiap sisi, digerakan dengan memutar setiap trek, seperti roda depan pada mobil. Trek dapat naik di dasar atau di atas perkerasan yang sebelumnya ditempatkan. Gambar 28-h menunjukkan mesin *paver* pada trek.

Gambar 28-i. Lajur trek

Fondasi harus diperlebar keluar, melewati trek lebar jalan, untuk memberikan dukungan yang cukup untuk alat. Hal ini diilustrasikan pada Gambar 28-i. Jalur trek harus sejajar dan bersih agar diperoleh permukaan beton yang merata dan halus.

6.2.6. Campuran beton untuk acuan bergerak

a) Konsistensi beton (slump)

Konsistensi campuran beton segar harus ditentukan dengan mengukur slump sesuai dengan SNI 1972: 2008. Rentang slump adalah sekitar (20 - 50) mm untuk jalan umum, dan sekitar (20 - 40) mm untuk jalan tol. Di beberapa pekerjaan diperlukan slump sekitar (15 - 25) mm dengan alasan bahwa karena acuan bergerak tidak menggunakan acuan tepi, sementara bagian tepi perkerasan beton yang plastis harus stabil. Toleransi yang diijinkan terhadap slump yang diusulkan untuk campuran beton manapun adalah \pm 13 mm.

b) Kuat awal beton

Kuat tekan beton diperlukan dengan kiat awal tinggi pada penggunaan acuan bergerak, yaitu harus dapat dicapai dalam waktu 12 jam, dibandingkan dengan beton konvensional yang membutuhkan waktu sekitar (5 - 14) hari.

c) Kadar air

Kadar air dalam beton pada penggunaan acuan bergerak harus lebih rendah, sehingga kekuatan beton lebih baik serta dapat meningkatan daya tahan terhadap rembesan garam, dan meningkatkan ketahanan beton terhadap kerusakan akibat ion klorida.

6.2.7. Persiapan yang diperlukan pada acuan bergerak

Seperti semua jenis acuan bergerak untuk perkerasan beton semen, seluruh komponen dari sistem harus diperiksa dengan hati-hati untuk memastikan bahwa bentuk permukaan, garis ketinggian, adalah bebas dari cacat. Sebelum pemasangan alat, permukaan acuan harus disemprot dengan pelumas. Aplikasi pelumasan perlu diulang selama operasi penghamparan beton dengan acuan bergerak.

Untuk acuan bergerak yang digunakan untuk perkerasan jalan, dasar acuan harus dipadatkan sesuai dengan kepadatan yang diperlukan, untuk mendukung mesin penghampar bekerja pada elevasi yang direncanakan. Karena acuan bergerak memerlukan system pengecoran beton segar yang kontinyu, dianjurkan agar tanggung jawab tim dan proses sebelum memulai pekerjaan dapat menjamin penuangan beton yang terus menerus.

Dalam operasi acuan bergerak untuk perkerasan beton dan median beton, batang penempa (*screed*) dengan kekuatan yang bervariasi dan mesin penggetar dapat digunakan. *Screed laser* untuk kontrol elevasi dapat mempersingkat waktu penempatan beton segar dan mengurangi biaya tenaga kerja.

6.2.8. Alinyemen dan kerataan

Tali string atau tali kawat yang dosokong oleh pasak atau patok yang kokoh, dikencangkan cukup kuat untuk mengurangi lenturan antar pasak. Sensor pada mesin penghampar beton akan mengikuti garis tali, dan setiap ada lenturan, akan menyebabkan permukaan yang ber gelombang yang dapat menghasilkan kualitas perjalanan yang tidak nyaman.

Tali string dibuat untuk mengontrol peralatan acuan bergerak pada level dan alinyemen yang tepat. Jarak dari patok ke patok untuk garis ketinggian setiap panjang sekitar (7,5-15) meter, di tepi perkerasan. Penampang kayu yang digunakan untuk patok sekitar (16-25) cm², ditanamkan ke dalam tanah. Ketinggian alinyemen tersebut pada patok kemudian dipasang paku payung di atas patok. Penggunaan garis ketinggian ini digunakan untuk mengontrol ketinggian dan alinyemen secara elektronis.

6.2.9. Kontrol alinyemen vertikal

Biasanya penghampar beton acuan bergerak memiliki sistem sensor elektronik atau sensor hidrolik untuk memberikan kontrol level, lihat Gambar 28-j. Sensor elektronik biasanya bekerja lebih baik.

Gambar 28-j. Sensor elektronik pada acuan bergerak

Sensor untuk kontrol level ada satu di setiap sisi paver, dan terdapat tongkat di bawah kawat panduan untuk mengatur tinggi mesin dengan menaikkan atau menurunkan silinder hidrolik vertikal di setiap sisi mesin. Gambar 28-k menunjukkan sensor vertikal dan horisontal. Kabel panduan dikencangkan untuk mencegah agar tidak melengkung. Gambar 28-l menunjukkan tampak samping sebuah penghampar beton. Perhatikan dua silinder hidrolik di sisi paver (sisi kanan Gambar 28-m). Gambar 28-n menunjukkan kontrol kawat panduan.

Gambar 28-k. Sensor horizontal dan vertikal

Gambar 28-I. Tampak samping mesin acuan bergerak

Gambar 28-m. Panduan Kawat pengendali

Gambar 28-n. Kawat pengendali tampak dari sisi lain

6.2.10. Alinyemen Horizontal

Alinyemen ahorizontal dapat dikontrol oleh sensor atau dikendalikan oleh operator.

6.2.11. Kecepatan Penghampar

Kecepatan penghampar bergerak maju dikendalikan oleh operator. Kecepatan harus seseragam mungkin, tetapi harus bervariasi sesuai dengan pengiriman beton sehingga dapat berhenti penuh pada kecepatan minimum. Kecepatan penghampar dapat mencapai 6 m per menit. Jika mesin berhenti bergerak maju, vibrator harus dimatikan segera dalam waktu lima detik. Bila diteruskan dan vibrator masih hidup, akan menghasilkan pemisahan agregat dalam beton, dan memaksa air naik ke permukaan.

6.2.12. Gurdi (*Augers*)

Putaran *augers* bergerak menyamping beton ke seluruh jalur yang sedang dihampar. Auger dikendalikan oleh operator dan dapat diaktifkan searah jarum jam atau berlawanan sesuai dengan kebutuhan. Gambar 28-o menunjukkan jarak dekat dari suatu *auger*.

Gambar 28-o. Auger

Gambar 28-p *Auger* dan penyebaran beton

Augers pada penyebar mesin penghampar membantu mendistribusikan beton ke seluruh lebar perkerasan, dipastikan bahwa bagian atas beton dipertahankan seragam di seluruh lebar perkerasan. Vibrator membantu secara langsung energi ke bawah ke perkerasan beton dan membantu memastikan pemadatan beton yang tepat. Gambar 28-p menunjukkan auger dan penyebaran beton.

6.2.13. Vibrator

Frekuensi *vibrator* dengan tekanan udara yang berada dalam beton harus tidak kurang dari 8.000 siklus per menit. Gambar 28-q dan Gambar 28-r menunjukkan *vibrator* yang terendam dan digerakkan oleh motor listrik.

Vibrator pada penghampar jenis acuan bergerak dikendalikan secara hidrolis. Gambar 28-r menunjukkan bagian bawah acuan bergerak. Keterangan untuk Gambar 28-r dari kanan ke kiri adalah:

- 1) augers
- 2) strike-off screed
- 3) vibrator
- 4) finishing screed
- 5) pan float.

Gambar 28-q. *Vibrator* terbenam (*Immersion Vibrators*).

Gambar 28-r. Bagian bawah acuan bergerak

Gambar 28-s. Posisi *Vibrator* yang disarankan

Gambar 28-t. Zona vibrasi dalam beton

Vibrator perlu dipasang cukup tinggi agar tidak tersangkut pada salah satu baja tulangan. Sebuah goresan pada permukaan perkerasan beton di belakang mesin penghampar mungkin menunjukkan bahwa ada vibrator yang tidak bekerja. Gambar 28-s menunjukkan posisi getaran yang dianjurkan. ketika mesin penghampar bergerak ke kiri. Beban tambahan harus dipertahankan selama vibrator beroperasi. Setiap kali gerakan maju kemudian paver dihentikan, vibrator harus dimatikan. Gambar 28-t menunjukkan zona yang bergetar pada beton. Goresan vibrator atau jejak yang terlihat di belakang mesin penghampar beton dalam Gambar 28-u menunjukkan adanya noda vibrator. Hal ini karena vibrator tidak bergetar dengan benar.

Gambar 28-u. Goresan vibrator yang tidak bekerja dengan benar.

6.2.14. Pelepa perata (floating pan)

Setelah *screeding*, permukaan beton diratakan dengan pelepa perata yang menghaluskan dan memadatkan beton. Pelepa adalah pelat yang solid mempunyai lebar (45 – 150) cm atau dan selebar perkerasan. Gambar 28-v menunjukkan pelepa perata pada alat peghampar yang sedang tidak beroperasi.

Gambar 28-v. Pelepa perata di bawah mesin penghampar acuan bergerak

6.2.15. Penyelesaian akhir (finishing)

1) Menutup Permukaan Beton

Untuk menutup semua lubang kecil di permukaan dan menghasilkan permukaan yang halus, rata dan seragam, beton yang masih plastis dan sudah terbentuk harus lurus. Sebuah pelepa dapat digunakan bila menggunakan mesin finishing. Dalam Gambar 28-w dan Gambar 28-x menunjukkan contoh pelepa berbentuk silinder yang mengapung.

Tabung mengapung ditarik mundur dalam arah longitudinal. Perhatikan bahwa tabung mengapung ditarik oleh rantai. Pelepa silinder menyudut sekitar 60 derajat terhadap sumbu memanjang perkerasan. Pelepa silinder harus menutupi seluruh lebar perkerasan yang akan dicor. Untuk perkerasan beton yang lebar, digunakan lebih dari satu pelepa slinder. Pelepa memanjang dan berpola "V" akan menghasilkan permukaan yang lebih baik (Gambar 28-x dan Gambar 28-y). Untuk bagian yang sulit dijangkau oleh alat pelepa, dapat digunakan roskam tangan (hand trowel) seperti ditunjukkan dalam Gambar 28-z. Gambar 28- aa menunjukkan alat pelepa yang ditekan sambil ditarik untuk meratakan bagian-bagian tertentu yang perlu diratakan.

Gambar 28-w. Pele<mark>pa sil</mark>inder (*Tube Floats*).

Gambar 28-x. Pelepa memanjang

Gambar 28-y. Pelepa bentuk "V" yang ditarik mesin

Gambar 28-z. Roskam tangan (*Hand Trowel*) untuk yang sulit dijangkau mesin

Gambar 28-aa. Penekanan alat pelepa (Bull float)

2) Air di permukaan Beton

Setiap pekerjaan *finishing* mungkin muncul air di permukaan yang akan menghasilkan kekuatan beton yang rendah. Sejak tahun 2004, spesifikasi rasio air semen maksimum yang diijinkan telah dikurangi menjadi sekitar 0,45 dari 0,50. Diharapkan bahwa dengan dikuranginya rasio air-semen, akan mengurangi air di permukaan. Penggunaan bahan tambahan yang bersifat semen (*cementious*) seperti *fly ash* dan abu terak dari butiran *blast furnace* akan mengurangi kemungkinan air naik ke permukaan beton.

3) Penyelesaian akhir (finishing) dengan mistar pendatar (straightedge)

Mistar pendatar panjang 3,5 m atau 4,5 m (10 ft atau 15-ft), terbuat dari baja atau magnesium berbentuk profil persegi. Kegiatan finishing ditunjukkan dalam Gambar 28- bb sampai dengan Gambar 28-ee. Bila perataan permukaan beton tidak menggunakan pelepa (*floats*) untuk menghilangkan genangan air di permukaan, batang penempa (*screed*) dapat digunakan. Alat *straightedge* lebih baik untuk meratakan permukaan yang menonjol daripada dengan alat pelepa, tetapi akan lebih lama karena tidak bisa dilakukan secara mekanis. Posisi straightedge harus sejajar dengan garis tengah perkerasan ketika ditarik ke tepi perkerasan.

Gambar 28- bb. Straightedge Finishing

Gambar 28- cc. Pulling the straightedge – keeping the handle high

Gambar 28- dd. *Pushing the*straightedge – keeping the handle low

Gambar 28- ee. Straightedging behind a longitudinal float

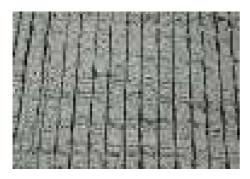
4) Pembuatan tekstur (texturing)

Tekstur permukaan diperlukan untuk memberikan perlawanan selip dan untuk mencegah hydroplaning. Dua jenis tekstur dapat dibuat dengan tarikan karpet (*carpet drag, Astroturf*), dan *tining*.

Ketentuan khusus memungkinkan membuat tekstur menggunakan karpet yang ditarik tetapi hanya untuk jalan raya dengan kecepatan rencana sampai 70 km/h (45 mph) atau kurang asalkan kedalaman tekstur rata-rata tidak kurang dari 0,04 masuk. Dalam Gambar 28-ff dan Gambar 28-gg diperlihatkan karpet Astroturf yang sebelumnya dibasahi kemudian ditarik secara *longitudinal* pada beton yang masih plastis. Tekstur ini memberikan permukaan beton dengan tekstur kasar mirip dengan bekas goresan sapu. Dalam Gambar 28-gg dan Gambar

28-hh diperlihatkan masing-masing karpet yang dipasang pada mesin dan karpet yang terlipat dan tidak boleh dilaksanakan.

Gambar 28-ff. Karpet Astroturf yang jatuh bebas di atas beton


Gambar 28-gg. Karpet Astroturf yang dipasang pada mesin.

Gambar 28-hh. Karpet Astroturf yang terlipat

5) Tining

Tujuan utama dari tining adalah agar permukaan perkerasan beton semen dapat memberikan perlawanan terhadap hydroplaning. Dalam Gambar 28-ii dan Gambar 28-jj menunjukkan permukaan yang ditekstur dengan alat tining. Alat tining terbuat dari logam untuk membuat alur melintang di permukaan beton plastis dengan kedalaman 4 mm (3/16 in.), lebar alur-tekstur 2 mm (1/12 in.), dan spasi rata-rata 25 mm (1 inci). Jarak tining memiliki banyak hubungan dengan tingkat kebisingan. Kedalaman alur minimum adalah 2 mm (1/8 in.).

Gambar 28-ii. Permukaan yang ditekstur dengan alat Tining

Gambar 28-jj. Mechanical Tining Device.

Untuk memastikan bahwa alur tersebut lurus, alat *tining* harus ditarik secara mekanis. Perangkat mekanis ini dirancang untuk alat *tining* beton dengan lebar 8 m (24 ft). Gambar 28-jj menunjukkan perangkat *tining* mekanis.

Bab- Penutup

7.1. Ujicoba Skala Penuh di Buntu-Kebumen, Jawa Tengah7.1.1. Kondisi Visual dan Sifat-sifat Permukaan

- 1) Perkembangan kondisi (kerusakan) yang dipantau untuk umur satu bulan, lima bulan, 10 bulan, 15 bulan, dan 32 bulan menunjukkan perubahan antara lain penambahan retak (melintang, retak sudut dan retak susut), spall, faulting, dan pumping).
- 2) Perkembangan retak melintang terbanyak sampai umur 32 bulan ditemukan pada beton karet pracetak (16 cm/m²). Pada jenis lainnya relatif kecil yaitu sekitar (2 7) cm/m². Walaupun retak terdapat pada beton, belum menunjukkan efek *faulting* karena terdapat ikatan antar agregat (*aggregate interlock*) yang cukup. Untuk mengurangi pemeliharaan retak yang efisien, tidak direkomendasikan perkerasan beton karet untuk perkerasan jalan dengan lalu lintas padat dan berat. Pemantauan secara rutin perlu dilakukan agar setiap retak baru dapat segera dilakukan *sealant*.
- 3) Perkembangan retak memanjang terbanyak ditemukan pada beton prategang pasca tarik cor di tempat (M6a) sebesar 11 cm/m² dan pada jenis lainnya relatif kecil (1 4) cm/m². Retak memanjang tersebut pada M6a terjadi karena tidak dirancang prategang arah melintang. Untuk pemeliharaan saat ini, diperlukan perbaikan dengan metode stiching sepanjang retakan setiap 30 cm menggunakan baja profil

- diameter 16 mm. Untuk perkembangan selanjutnya, perkerasan beton prategang cor di tempat perlu dirancang dengan prategang di kedua arah, baik melintang maupun memanjang.
- 4) Retak sudut ditemukan pada beton pracetak-prategang dengan 6 strand (M5) sekitar (0,4 1,0) % terhadap luas. Retak irregular terbanyak pada beton konvensional (M6b) dan jenis lainnya, tetapi tidak seberapa besar (0,2 -- 0,45) cm/m².
- 5) Gompal (*spall*) ditemukan terbanyak pada beton pracetak-prategang (M4), sekitar 11 cm/m², disusul pada bahu beton yang berbatasan dengan beton semen cor di tempat (M6b), dan pada bahu beton yang berbatasan dengan beton pracetak-prategang (M5) tetapi relatif kecil (2 cm/m²). Perkembangan *spall* berhenti pada umur 17 bulan.
- 6) Faulting ditemukan pada beton karet pracetak (M3) dan beton konvensional cor di tempat (M6b) 3,5 cm/m² dan lainnya relatif kecil. Faulting pada umumnya terdapat di antara bahu beton dan panel, bahu beton lebih tinggi sekitar (4,0 8,0) mm dari pada panel beton. Seluruh faulting adalah karena pelaksanan, dan bukan disebabkan oleh penurunan panel.
- 7) Pumping terdapat pada sambungan panel beton pracetak-prategang (M5 dan M4) sekitar 4 cm/m², beton karet pracetak (M3) sekitar 1 cm/m², serta antara bahu dan panel pracetak tetapi relatif sedikit. Grouting berhasil menghentikan pumping, tetapi tempat tersebut harus dilakukan pengecekan karena dalam waktu beberapa bulan muncul pumping di tempat yang sama. Perlu dilakukan pengamatan setiap saat karena sampai umur 32 bulan masih ada kemungkinan pumping baru akan terjadi di lokasi yang lain.
- 8) Untuk perkerasan beton cor di tempat, nilai kedalaman tekstur antara 0,67 mm dan 0,75 mm > 0,60 mm sehingga relatif cukup dapat menghasilkan kekesatan yang baik sampai umur (8 22) bulan dan selanjutnya menurun sehinga < 0,60 mm.
 - Untuk perkerasan beton pracetak menunjukkan nilai kedalaman tekstur yang kurang dari 0,6 mm sejak awal perkerasan beton dibuka. Untuk pekerjaan beton pracetak perlu upaya pembuatan tekstur yang

- sesuai dengan rancangan, atau dengan dimensi, kedalaman: lebar alur: spasi = 4 mm : 2 mm (minimum) : 25 mm.
- 9) Nilai kekesatan permukaan pada awal survai menunjukkan nilai ratarata antara 59 BPN dan 60 BPN > 55 BPN sehingga relatif baik.
- 10) Nilai ketidakrataan permukaan rata-rata antara 5,63 dan 6,07. Setelah dilakukan pemeliharaan menunjukkan penurunan kerataan tetapi tidak terlalu besar. Ketidakrataan pada panel pracetak (M5) relatif lebih baik dengan nilai IRI 3,5 m/km. Jenis lainnya relatif tinggi > 4 m/km. Indeks pelayanan atau present serviceability index (PSI) sampai umur 32 bulan menunjukkan indeks yang tetap antar 1,5 dan 2,4. Untuk memperoleh indeks yang ideal perlu dilakukan penambalan yang memadai, perbaikan faulting dan grinding seluruh permukaan menggunakan alat tertentu (grinding intan). Mesin grinding intan ini relatif mahal dan seluruh kontraktor belum ada yang memilikinya di Indonesia.

7.1.2. Gradien Temperatur Perkerasan Beton

Fluktuasi temperatur permukaan terjadi antara 22 °C dan 42 °C, bawah slab antara 26 °C dan 40 °C, udara antara 24 °C dan 36 °C. Gradien temperatur permukaan dan di bawah slab bervariasi antara siang dan malam. Pada siang hari antara 0 °C dan 5 °C, dan malam hari antara 1 °C dan 5 °C. Pada petang dan malam hari, temperatur bawah relatif lebih tinggi daripada di permukaan.

7.1.3. Perubahan Muai-Susut Pada Sambungan

Berdasarkan hasil perhitungan pemuaian panel dengan panjang 100 m, diperoleh nilai kontraksi sebesar 8,4 mm, dan perubahan panjang musiman sebesar 14 mm. Perubahan muai susut untuk panel panjang antara 5 m dan 30 m diperoleh nilai muai-susut antara 3 mm dan 5 mm.

7.1.4. Kondisi Bahu dan Drainase

Kondisi bahu jalan beton yang mengalami retak memperlihatkan perlambatan setelah berumur sekitar 5 bulan (Juni 2010) dan berkurang atau berhenti setelah berumur sekitar 18 bulan (Agustus 2011). Untuk keselamatan pengguna jalan, bahu beton yang retak dan aus perlu dilakukan perbaikan dan pemeliharan menggunakan beton atau campuran beraspal.

Bahu jalan yang berupa agregat kelas B ditemukan berkurang akibat lalu lintas dan penggerusan akibat aliran air (hujan) sehingga posisinya lebih rendah sekitar (2 - 10) cm dari tepi bahu beton, sehingga memerlukan penambahan dan pemadatan yang memadai.

Kondisi drainase di bagian luar bahu jalan pada umumnya berfungsi dan terpelihara, kecuali di bagian utara terjadi dinding drainase luar yang runtuh sepanjang sekitar 32 meter akibat banjir besar yang pernah terjadi pada tahun 2010, sehingga diperlukan perbaikan.

7.1.5. Kondisi Struktur Perkerasan Berdasarkan Defleksi

Di bawah panel beton pracetak ditemukan voids, sedang pada beton cor di tempat relatif sedikit. Setelah dilakukan perbaikan dengan *grouting*, *voids* dan gejala *pumping* berkurang secara signifikan.

7.1.6. Pola Retak Vertikal

Pola retak <mark>ver</mark>tikal menunjukkan bahwa retak dimulai dari atas menuju ke bawah. Seluruh retakan tidak mengakibatkan *faulting*.

7.1.7. Lalu Lintas

Total kendaraan termasuk kendaraan penumpang umum dan sejenisnya pada Juni 2010 sebanyak 10.377 kendaraan, meningkat sekitar 50% pada Juli 2012 menjadi sekitar 15.215 kendaraan. Mobil penumpang (MP), truk kecil (T.2), truk dual wheel (Td) dan bus besar (BB) meningkat secara signifikan, tetapi truk besar lainnya menurun.

7.2. Jalan Tol Kanci-Pejagan

7.2.1. Kondisi Visual Permukaan Jalan dan Sambungan

- Dari 585 jumlah segmen Joint Panel (JP) yang disurvai untuk kedua jalur (A: Kanci-Pejagan, dan B: Pejagan-Kanci), kondisi baik 124 JP (20 -- 22) %, rusak 384 JP (60 -- 63) % dan sambungan tidak ada sealant (60 96) JP (11 -15) %. Kerusakan jenis pumping, retak, spalling, faulting dan tambalan lebih banyak ditemukan secara signifikan di Jalur B (arak ke Kanci).
- 2) Kondisi sambungan pada *joint* panel (JP), bahan penutup atau *sealant* yang ditemukan relatif sudah mengeras (*brittle*) dan sebagian besar tidak mempunyai bonding yang baik dengan permukaan celah sambungan. Kondisi bahan penutup sambungan berupa Latasir dan mortar beton rata-rata retak dan tidak ada bonding antara permukaan celah panel dengan bahan tersebut. Diperlukan investigasi lebih mendalam untuk mengidentifikasi hal-hal sebagai berikut:
 - kerusakan pada joint panel dan wet joint panel,
 - lokasi *pumping* pada JP yang memperlemah struktur pada sambungan, perlu diuji menggunakan FWD.
 - lokasi kerusakan lainnya seperti *spall* antar *base panel*, retak, dan posisi/keberadaan dowel.

Hasil investiga<mark>si ini perlu diinformasikan kepada otoritas terkait yang menangani jalan tol Kanci-Pejagan, untuk dilakukan program pemeliharaan.</mark>

- 3) Retak melintang, retak memanjang, retak sudut, retak buaya, *faulting*, lubang, *spalling*, *pumping* cenderung berkembang sehingga perlu dilakukan monitoring lebih lanjut.
- 4) Amblas yang terjadi telah diperbaiki secara rutin tetapi perlu dilakukan monitoring setiap saat untuk segera dilakukan upaya perbaikan.

7.2.2. Struktur Perkerasan Berdasarkan Pengukuran Defleksi dengan FWD

 Dari kedua Jalur tersebut menunjukkan bahwa efisiensi penyaluran beban (LTE) yang kurang dari 0,6 paling banyak ditemukan di lajur

- lambat Jalur B (77,2%), atau LTE yang relatif sedikit ditemukan di lajur lambat Jalur A (7,1%).
- 2) Seluruh sambungan di kedua jalur menunjukkan kondisi sambungan yang terindikasi void. Berdasarkan hasil penilaian kondisi sambungan yang diduga pumping dan kemudian dianalisis di bawah sambungan menggunakan data defleksi (FWD) terbukti bahwa sekitar 80% terindikasi voids yang mengancam sambungan menjadi rusak akibat beban kendaraan berat.
- 3) Dari kondisi tersebut perlu dilakukan pengamatan secara rutin untuk mengantisipasi kemungkinan adany *pumping*, dan segera dilakukan *grouting*. Hasil *grouting* perlu dievaluasi karena kemungkinan muncul *pumping* di tempat yang sama.

7.2.3. Perbaikan perkerasan beton dengan *Inverted T Concrete*

- 1) Cara perbaikan kerusakan sambungan muai pada perkerasan jalan beton semen berdasarkan beberapa literatur dapat dilakukan dengan cara mengganti atau menggunakan beton pracetak dan penulangan penuh. Namun pelaksanaan perbaikannya perlu memperhatikan penyebab kerusakan yang terjadi, persyaratan-persyaratan bahan dan peralatan, lapisan dasar, lingkungan (ruang kerja, cuaca), cara pelaksanaan, dan pengawasan yang memadai. Bila panel beton pracetak ditempatkan sebagai sleeper akan menemukan kesulitan pada saat memasang di bawah panel yang harus menjorok ke dalam sekitar 30 cm di setiap ujung panel yang berhadapan.
- 2) Penerapan *inverted T concrete* cor di tempat menggunakan bahan cepat *setting* (*rapid setting concrete*) relatif akan lebih mudah, dengan memperhatikan kedalaman *sleeper* slab di bawah ujung panel, pekerjaan pemasangan pondasi granular berdrainase (*drainage base*) yang memadai untuk drainase-bawah permukaan, dihubungkan dengan pipa berlubang sampai ke tepi luar ujung bahu jalan.

- 3) Keuntungan perbaikan dengan *Inverted T concrete* dapat menghentikan *pumping* dan menurunkan defleksi secara drastis sampai 95% atau defleksi yang terjadi relatif kecil dan tidak menyebabkan *pumping*.
- 4) Dari hasil perbaikan sambungan muai di sebanyak 75 tempat, sekitar 88% berhasil menghentikan *pumping*.

7.3. Jalan Beton Pracetak di Ciasem, Pantura Jawa Barat7.3.1. Kondisi Visual Permukaan Jalan

- Perkembangan retak melintang panel masih berlangsung terutama pada JP-01, dan JP-09 s./d JP-13, sehingga perlu dilakukan monitoring lebih lanjut.
- 2) Perkembangan retak memanjang ditemukan pada JP-01, dan JP-05, serta JP-09 s/d JP-13, dan tampak masih berkembang sehingga perlu dilakukan pula monitoring lebih lanjut.
- 3) Jenis retak lainnya (sudut, irregular, retak kulit buaya) telah dilakukan perbaikan dan tidak berkembang tetapi perlu dimonitor lebih lanjut bersamaan dengan perkembangan retak memanjang dan retak melintang.
- 4) Spalling terdapat pada JP-06, JP-08 dan JP-11 telah dilakukan perbaikan dan tidak berkembang tetapi perlu dimonitor lebih lanjut bersamaan dengan perkembangan retak memanjang dan retak melintang.
- 5) Pumping terdapat pada JP-3 s/d JP-05 dan JP-07 s/d JP-09. Secara visual, masih nampak ada pada saat kendaraan berat lewat, terlihat goyangan ujung panel dan getaran yang signifikan. Kerusakan ini perlu setiap saat dilakukan grouting, dan seperti pada lokasi pemantauan lainnya (jalan tol Kanci Pejagan dan dilakukan, perbaikan grouting untuk mengisi rongga di bawah panel tetapi tidak cukup dilaksanakan satu atau dua kali karena kemungkinan masih akan muncul pumping di tempat yang sama.

7.3.2. Struktur Perkerasan Berdasarkan Pengukuran Defleksi dengan FWD

Berdasarkan kondisi yang ada di lapangan, terdapat getaran di beberapa titik sambungan, baik di lajur lambat, lajur cepat atau di *center line*. Jumlah yang terbukti di lapangan mengalami getaran dan timbul bolong pada sealant adalah *Joint Panel JP-5* s/d JP-12. Untuk menjaga agar tidak terjadi kerusakan yang berkembang perlu segera dilakukan *grouting* di bawah sambungan (*joint panel*) secara rutin dan dicek kembali karena berdasarkan pengalaman, pekerjaan *grouting* tidak cukup dilakukan satu atau dua kali. Tommy E Nantung, PhD, PE. (Oktober 2010).

7.4. Jalan CRCP dan JRCP di Tol Tangerang-Merak

Secara visual, belum terlihat adanya kerusakan apapun di atas CRCP dan JRCP ke permukaan beton aspal, kecuali pada sambungan melintang antara CRCP dengan JRCP dan antara JRCP dengan JRCP. Kerusakan retak yang ada hanya pada sambungan antara bahu jalan yang di cor di tempat dengan jalan CRCP. Panjang retak yang diukur pada survai tanggal 07-Jul-2012, sepanjang 218 meter, dan berkembang berdasarkan hasil survai tanggal 07-Sep-2012 menjadi sepanjang 257 meter.

Kondisi sambungan antara CRCP dan JRCP sebagian terbuka dan belum dilakukan penutup<mark>an</mark> dengan *sealant*, yang dikhawatirkan akan dimasuki air hujan dan berakibat *pumping*.

7.5. Mesin Pembentuk Perkerasan Beton

7.5.1. Mesin untuk acuan tetap (fixed form)

Mesin pembentuk perkerasan beton terdiri atas 2 jenis yaitu jenis mesin untuk acuan tetap (fixed form) dan mesin untuk acuan gelincir atau acuan bergerak (slip form). Dinding pada penghampar beton jenis acuan tetap, digunakan untuk menahan beton segar tetap di tempat pada ketinggian yang tepat sampai beton mengeras. Bagian atas acuan ini juga dapat berfungsi sebagai dudukan untuk menempatkan peralatan perata dan pekerjaan penyelesaian akhir. Penghampar beton acuan tetap cocok untuk pekerjaan dengan bentuk geometri yang rumit, atau untuk lebar

perkerasan yang bervariasi, walaupun dapat digunakan pula untuk pekerjaan besar.

7.5.2. Mesin untuk acuan bergerak (slip form)

Di banyak kegiatan pekerjaan konstruksi, kondisi cuaca di lokasi selama operasi, memerlukan pertimbangan penting. Pada temperatur rendah atau cuaca dingin, pengerasan beton adalah paling lambat, dan dapat menunda pembongkaran acuan bekisting tersebut. Cuaca dingin juga dapat mempengaruhi kekuatan beton. Dalam cuaca panas, beton rentan terhadap penurunan slump yang cepat, kadar udara berkurang, pengerasan dini, dan retak termal. Dengan acuan bergerak, masalah tersebut semaksimal mungkin dapat dihindari. Acuan bergerak bisa lebih cepat dan lebih ekonomis daripada acuan konvensional, dan ini sering menjadi alasan kenapa digunakan acuan bergerak. Mesin perkerasan beton acuan bergerak harus merupakan satu unit mesin yang mempunyai fungsi menghampar, meratakan, memadatkan dan membentuk perkerasan sekaligus memberi arah dan mengatur elevasi sesuai dengan kebutuhan dalam sekali gerak maju.

Daftar Pustaka

- AASHTO (1993). The Guide of Pavement Design. Subcommittee on Prestressed Concrete Pavement.
- Aberdeen Group (1964). (PUBLICATION #C640385, Copyright © 1964, The Aberdeen Group, All rights reserved).
- American Concrete Institute, ACI (ACI 325.7R-88. Recommendation for Designing Prestressed Concrete Pavements).
- American Concrete Pavement Association (ACPA). (1995). Construction of Portland Cement Concrete Pavements. National Highway Institute Course No. 13133. AASHTO/FHWA/Industry joint training. Federal Highway Administration, Department of Transportation. Washington, D.C. [http://www.pavementinteractive.org/article/fixed-form-paving/2 Nov 2012.:
- Apollo Fixed Form Concrete Paver, India. (2012), (http://www.youtube.com/watch?v= ms0mcTxMAHo)
- Asphalt Institute (MS-17, 2000). Asphalt Overlays for Highway and Street Rehabilitation. The Asphalt Institute Manual Series 17 (MS-17). Reserach Park Drive.PO Box 14052. Lexington Kenyutcky.
- Austroad (1992). Pavement Design, A Guide to the Structural Design of Road Pavements. Sydney 1992.
- Balitbang PU (2009). Perkerasan Jalan Beton Semen Pracetak, Seksi 5.7. Spesifikasi Khusus (PT-0), Bidang Jalan dan Jembatan.
- Bina Marga, Dept. PU (2007). Bahan Presentasi Beton Pracetak di Cakung-Cilincing.
- David Croney cs, 1992. The Design and Performance Of Road Pavements. 2nd Edition, 1992):
- David K. Merrit, B.Frank McCullough, Ned H Burns, and Anton K Schindler. Federal Highway Administration (February, 2000). The Feasibility of Using Precast Concrete Panels to Expedite Highway Pavement Construction. Research Report 1517-1. The University of Texas at Austin 3208 Red River, Suite 200 Austin, TX 78705-2650.
- Deptartemen Pekerjaan Umum (2003). Perencanaan Perkerasan Jalan Beton Semen. Pedoman Konstruksi dan Bangunan. Pd T-14-2003.

Daftar Pustaka 165

- Departemen Pekerjaan Umum (dulu Departemen Permukiman dan Prasarana Wilayah).
- Federal Highway Administration (February, 2007). Precast Concrete Panel Systems for Full-Depth Pavement Repairs. Field Trials. Publication No. FHWA-HIF-07-019. Washington DC 20590.
- G. P. Ong and T. F. Fwa (2006). Analysis Of Effectiveness Of Longitudinal Grooving Against Hydroplaning. TRB 2006 Annual Meeting CD-ROM
- Indocement Tunggal Prakarsa Tbk, PT (2006). Precast Concrete Study. Market Development Division.Bahan presentasi. Project No: ST-02-07.
- Leksminingsih, Dra (2008). Penelitian Joint Sealant untuk Sambungan Perkerasan Beton Semen. Jurnal Jalan dan Jembatan. Volume 26 No. 2, Agustus 2009. ISSN: 1907-0284
- Luh M.Chang, Yu-Tzu Chen, Sangwook Lee (June 2004). Using Precast Concrete Panels For Pavement Construction In Indiana. Joint Transportation Research Program. Project No.C-36-46X.File No.5-11-24, SPR-2779. Purdue University West Lavayette, IN 47907.
- Meg Gawler. (September 2005). Logical Framework Analysis. Resources for Implementing the WWF Standards. This document is intended as a resource to support the implementation of the WWF Standards of Conservation Project and Programme Management. Written by: Meg Gawler, ARTEMIS Services. September 2005. Please address any comments to Sheila O'Connor (soconnor@wwfint.org).
- State of Florida Department of Transportation (2006). Rigid Pavement Design Manual. Pavement Management Office 605 Suwannee Street, M.S.70 Talahassee, Florida 32399-0450. Document No. 625-010-006-d. January 2006.
- Semesta Marga Raya (SMR), PT (2009). Proyek Pembangunan Jalan Tol Kanci-Pejagan. PT. Adhi Concrete Pavement System (ACPS). Divisi Konstruksi II. J. Juanda 39, Jakarta Pusat.
- Srategic Highway Research Program (SHRP). 1993. Distress Identification Manual for the Long-Term Pavement Performance Project. SHRP-P-338. Washington DC 1993.
- Tommy E Nantung, PhD, PE.,(Oktober 2010). Analisa SCPS. Void Detection based on FWD Testing.Laporan teknis PT.Adhi Karya, Oktober 2010.

Indeks

Α

Acuan bergerak, 1, 4, 5, 6, 120, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 142, 144, 157.

Acuan tetap, 1, 4, 5, 6, 119, 120, 121, 122, 125, 126, 128, 129, 130, 132, 157.

Approach edge, 14, 20, 66, 67.

В

Bahan tambah karet, 4.

Bedding-course, xxii.

British Pendulum Number, 10, 46.

British Pendulum Tester, 5, 10, 46

C

Continuously Reinforced Concrete Pavements, .8

Core Drill, 13, 76.

Curing, 2, 160, 136, 137, xxii, xxiv.

D

Dynamic Cone Penetrometer (DCP), 5.

Ε

Evaluasi, xxi, 2, 3, 6.

F

Falling Weight Deflectometer (FWD), 5, 11, 22, 51, 111.

G

Gradien, xxiii, 5, 8, 48, 50, 97, 152.

Н

Hydroplaning, 23, 147.

Indeks 167

J

JPCP, xxiii, 7.

JRCP, xiiii, 7, 114, 118, 127, 128, 157.

Κ

Kinerja, xxiii, xxix, 1, 2, 3, 6, 8, 14, 21, 22, 23, 47, 48.

L

Leave edge, 14, 15, 20.

M

Monitoring, xxii, 2, 3, 5, 6, 7, 21, 22, 81, 82, 83, 84, 85, 103, 104, 154, 156.

P

Pavement Condition Survey, 7.

Penilaian kondisi permukaan, 5, 51, 102.

Pracetak, xxi, xxii, 2, 4, 5, 7, 8, 11, 23, 24, 26, 27, 29, 31, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 52, 73, 76, 77, 98, 102, 150, 151, 152, 153, 155, 156.

Pracetak-prategang, 2, 4, 5, 8, 23, 24, 31, 36, 38, 40, 42, 43, 45, 51, 53, 81, 100, 151.

Prategang, xxi, xxiii, 1, 2, 4, 5, 34, 37, 38, 39, 51, 55, 76, 150, 151.

Present Serviceability Index (PSI), 14, 21, 22, 152.

R

Roughness, 5, 9, 14, 21, 22.

S

Sand patch, 5, 9, 10, 45.

Slab, 14, 16, 19, 22, 26, 27, 48, 49, 77, 92, 98, 99, 109, 122, 124, 132, 133, 136, 152, 155.

Sip form, 1, 4, 119, 120, 157.